Cargando…
Explaining Accurate Predictions of Multitarget Compounds with Machine Learning Models Derived for Individual Targets
In drug discovery, compounds with well-defined activity against multiple targets (multitarget compounds, MT-CPDs) provide the basis for polypharmacology and are thus of high interest. Typically, MT-CPDs for polypharmacology have been discovered serendipitously. Therefore, over the past decade, compu...
Autores principales: | Lamens, Alec, Bajorath, Jürgen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9860926/ https://www.ncbi.nlm.nih.gov/pubmed/36677879 http://dx.doi.org/10.3390/molecules28020825 |
Ejemplares similares
-
Explaining Multiclass Compound Activity Predictions Using Counterfactuals and Shapley Values
por: Lamens, Alec, et al.
Publicado: (2023) -
Explainable machine learning predictions of dual-target compounds reveal characteristic structural features
por: Feldmann, Christian, et al.
Publicado: (2021) -
Interpretation of machine learning models using shapley values: application to compound potency and multi-target activity predictions
por: Rodríguez-Pérez, Raquel, et al.
Publicado: (2020) -
X-ray-Structure-Based Identification of Compounds with Activity against Targets
from Different Families and Generation of Templates for Multitarget
Ligand Design
por: Gilberg, Erik, et al.
Publicado: (2018) -
Prediction of Compound Profiling Matrices Using Machine Learning
por: Rodríguez-Pérez, Raquel, et al.
Publicado: (2018)