Cargando…

Experimental and Theoretical Study on the Fatigue Crack Propagation in Stud Shear Connectors

Steel-concrete composite girder bridges are subjected to reciprocal cyclic loading from vehicles, and the stud shear connectors are the key components for transmitting shear forces. Thus, it is necessary to study the fatigue performance of the stud shear connectors. At present, there are few studies...

Descripción completa

Detalles Bibliográficos
Autores principales: Kuang, Yachuan, Wang, Yameng, Xiang, Ping, Tao, Li, Wang, Kun, Fan, Fan, Yang, Jiahui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9860982/
https://www.ncbi.nlm.nih.gov/pubmed/36676439
http://dx.doi.org/10.3390/ma16020701
Descripción
Sumario:Steel-concrete composite girder bridges are subjected to reciprocal cyclic loading from vehicles, and the stud shear connectors are the key components for transmitting shear forces. Thus, it is necessary to study the fatigue performance of the stud shear connectors. At present, there are few studies on the fatigue crack propagation process of studs, and the variation curve of the crack depth of studs with the number of fatigue loading cycles is not clear. In this study, the degradation law of fatigue properties and the fatigue crack propagation law of stud shear connectors in steel-concrete composite structures are examined under fatigue loading. The fatigue properties, i.e., failure mode, the dynamic slip-fatigue number curve, cross-sectional characteristics, and the residual bearing capacity of the stud specimens, are first systematically studied through ten standard push-out specimen tests. The test results show that the relative value of the fatigue crack extension area increases, while the relative value of the residual bearing capacity of the studs decreases approximately linearly. Then, the expression of the relationship between the fatigue crack depth and the residual load-bearing capacity of the stud is proposed, based on the fatigue crack theory of fracture mechanics. Finally, combined with the ABAQUS and FRANC3D software, a fatigue crack propagation finite element analysis (FEA) model of the stud is established. The FEA results showed that the trends in the number of cyclic loads and the fatigue crack depth of studs are basically the same for the simulation curve, test curve and theoretical calculation curve.