Cargando…
A Centrifugal-Force-Driven Nano-Replication Strategy
The replication of nano-patterns is a significant means of nanomanufacturing. However, there is still a dearth of nano-replication methods that meet the requirements of both high precision and low cost. Therefore, a new strategy to achieve the replication of nano-patterns, namely centrifugal-force-d...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9861018/ https://www.ncbi.nlm.nih.gov/pubmed/36678098 http://dx.doi.org/10.3390/nano13020346 |
Sumario: | The replication of nano-patterns is a significant means of nanomanufacturing. However, there is still a dearth of nano-replication methods that meet the requirements of both high precision and low cost. Therefore, a new strategy to achieve the replication of nano-patterns, namely centrifugal-force-driven nano-replication (CFDNR), is proposed here. An easily obtained centrifugal force which is perpendicular to the plane of a nanostructured template is designed as a driving power, to compel the dynamic polymer to fully fill the space of the template; then, the nano-pattern can be replicated on a polymer film. Anodic aluminum oxide (AAO) templates with nanohole periods of ~450 nm and ~100 nm were employed as the original masters to investigate the nano-replication behaviors. The results of morphology measurements demonstrate excellent precision. The size deviations between the nanohole in the template and the nanopillar on the polymer film are less than 4%. Furthermore, a vacuum-assisted CFDNR scheme is proposed to prevent the formation of cavitation on the polymer replica. This work provides new possibilities and choices for facile, inexpensive and high-precision nanomanufacturing. |
---|