Cargando…
Deep Reinforcement Learning for Physical Layer Security Enhancement in Energy Harvesting Based Cognitive Radio Networks
The paper studies the secrecy communication threatened by a single eavesdropper in Energy Harvesting (EH)-based cognitive radio networks, where both the Secure User (SU) and the jammer harvest, store, and utilize RF energy from the Primary Transmitter (PT). Our main goal is to optimize the time slot...
Autores principales: | Lin, Ruiquan, Qiu, Hangding, Jiang, Weibin, Jiang, Zhenglong, Li, Zhili, Wang, Jun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9861036/ https://www.ncbi.nlm.nih.gov/pubmed/36679601 http://dx.doi.org/10.3390/s23020807 |
Ejemplares similares
-
Optimal resource allocation method for energy harvesting based underlay Cognitive Radio networks
por: Liao, Jianbin, et al.
Publicado: (2023) -
Multiband Spectrum Sensing and Power Allocation for aCognitive Radio-Enabled Smart Grid
por: Wang, Jun, et al.
Publicado: (2021) -
Outage Probability Minimization for Energy Harvesting Cognitive Radio Sensor Networks
por: Zhang, Fan, et al.
Publicado: (2017) -
Age of Information Minimization for Radio Frequency Energy-Harvesting Cognitive Radio Networks
por: Sun, Juan, et al.
Publicado: (2022) -
Optimal Throughput for Cognitive Radio with Energy Harvesting in Fading Wireless Channel
por: Vu-Van, Hiep, et al.
Publicado: (2014)