Cargando…
Dual Residual Denoising Autoencoder with Channel Attention Mechanism for Modulation of Signals
Aiming to address the problems of the high bit error rate (BER) of demodulation or low classification accuracy of modulation signals with a low signal-to-noise ratio (SNR), we propose a double-residual denoising autoencoder method with a channel attention mechanism, referred to as DRdA-CA, to improv...
Autores principales: | Duan, Ruifeng, Chen, Ziyu, Zhang, Haiyan, Wang, Xu, Meng, Wei, Sun, Guodong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9861137/ https://www.ncbi.nlm.nih.gov/pubmed/36679819 http://dx.doi.org/10.3390/s23021023 |
Ejemplares similares
-
Dual Autoencoder Network with Separable Convolutional Layers for Denoising and Deblurring Images
por: Solovyeva, Elena, et al.
Publicado: (2022) -
Sparse Convolutional Denoising Autoencoders for Genotype Imputation
por: Chen, Junjie, et al.
Publicado: (2019) -
Denoising of Optics Measurements Using Autoencoder Neural Networks
por: Fol, Elena, et al.
Publicado: (2021) -
Classification of Thyroid Nodules with Stacked Denoising Sparse Autoencoder
por: Li, Zexin, et al.
Publicado: (2020) -
RatUNet: residual U-Net based on attention mechanism for image denoising
por: Zhang, Huibin, et al.
Publicado: (2022)