Cargando…
Design, Synthesis, Fungicidal and Insecticidal Activities of Novel Diamide Compounds Combining Pyrazolyl and Polyfluoro-Substituted Phenyl into Alanine or 2-Aminobutyric Acid Skeletons
Thirty novel diamide compounds combining pyrazolyl and polyfluoro-substituted phenyl groups into alanine or 2-aminobutyric acid skeletons were designed and synthesized with pyflubumide as the lead compound to develop potent and environmentally friendly pesticides. The preliminary bioassay results in...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9861274/ https://www.ncbi.nlm.nih.gov/pubmed/36677619 http://dx.doi.org/10.3390/molecules28020561 |
Sumario: | Thirty novel diamide compounds combining pyrazolyl and polyfluoro-substituted phenyl groups into alanine or 2-aminobutyric acid skeletons were designed and synthesized with pyflubumide as the lead compound to develop potent and environmentally friendly pesticides. The preliminary bioassay results indicated that the new compounds containing the para-hexa/heptafluoroisopropylphenyl moiety exhibit fungicidal, insecticidal, and acaricidal activities. This is the first time that the para-hexa/heptafluoroisopropylphenyl group is a key fragment of the fungicidal activity of new N-phenyl amide compounds. Most of the target compounds exhibited moderate to good insecticidal activity against Aphis craccivora at a concentration of 400 μg/mL, and some showed moderate activity at a concentration of 200 μg/mL; in particular, compounds I-4, II-a-10, and III-26 displayed higher than 78% lethal rates at 200 μg/mL. Compound II-a-14 exhibited a 61.1% inhibition at 200 μg/mL for Tetranychus cinnabarinus. In addition, some of the target compounds exhibited good insecticidal activities against Plutella xylostella at a concentration of 200 μg/mL; the mortalities of compounds I-1, and II-a-15 were 76.7% and 70.0%, respectively. Preliminary analysis of the structure–activity relationship (SAR) indicated that the insecticidal and acaricidal activities varied significantly depending on the type of substituent and substitution pattern. The fungicidal activity results showed that compounds I-1, II-a-10, II-a-17, and III-26 exhibited good antifungal effects. Enzymatic activity experiments and in vivo efficacy of compound II-a-10 were conducted and discussed. |
---|