Cargando…
Exploration of Microbially Derived Natural Compounds against Monkeypox Virus as Viral Core Cysteine Proteinase Inhibitors
Monkeypox virus (MPXV) is a member of the Orthopoxvirus genus and the Poxviridae family, which instigated a rising epidemic called monkeypox disease. Proteinases are majorly engaged in viral propagation by catalyzing the cleavage of precursor polyproteins. Therefore, proteinase is essential for monk...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9861291/ https://www.ncbi.nlm.nih.gov/pubmed/36680291 http://dx.doi.org/10.3390/v15010251 |
_version_ | 1784874804493418496 |
---|---|
author | Dubey, Amit Alawi, Maha M. Alandijany, Thamir A. Alsaady, Isra M. Altwaim, Sarah A. Sahoo, Amaresh Kumar Dwivedi, Vivek Dhar Azhar, Esam Ibraheem |
author_facet | Dubey, Amit Alawi, Maha M. Alandijany, Thamir A. Alsaady, Isra M. Altwaim, Sarah A. Sahoo, Amaresh Kumar Dwivedi, Vivek Dhar Azhar, Esam Ibraheem |
author_sort | Dubey, Amit |
collection | PubMed |
description | Monkeypox virus (MPXV) is a member of the Orthopoxvirus genus and the Poxviridae family, which instigated a rising epidemic called monkeypox disease. Proteinases are majorly engaged in viral propagation by catalyzing the cleavage of precursor polyproteins. Therefore, proteinase is essential for monkeypox and a critical drug target. In this study, high-throughput virtual screening (HTVS) and molecular dynamics simulation were applied to detect the potential natural compounds against the proteinase of the monkeypox virus. Here, 32,552 natural products were screened, and the top five compounds were selected after implementing the HTVS and molecular docking protocols in series. Gallicynoic Acid F showed the minimum binding score of −10.56 kcal/mole in the extra precision scoring method, which reflected the highest binding with the protein. The top five compounds showed binding scores ≤−8.98 kcal/mole. These compound complexes were tested under 100 ns molecular dynamics simulation, and Vaccinol M showed the most stable and consistent RMSD trend in the range of 2 Å to 3 Å. Later, MM/GBSA binding free energy and principal component analysis were performed on the top five compounds to validate the stability of selected compound complexes. Moreover, the ligands Gallicynoic Acid F and H2-Erythro-Neopterin showed the lowest binding free energies of −61.42 kcal/mol and −61.09 kcal/mol, respectively. Compared to the native ligand TTP-6171 (ΔG(Bind) = −53.86 kcal/mol), these two compounds showed preferable binding free energy, suggesting inhibitory application against MPXV proteinase. This study proposed natural molecules as a therapeutic solution to control monkeypox disease. |
format | Online Article Text |
id | pubmed-9861291 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-98612912023-01-22 Exploration of Microbially Derived Natural Compounds against Monkeypox Virus as Viral Core Cysteine Proteinase Inhibitors Dubey, Amit Alawi, Maha M. Alandijany, Thamir A. Alsaady, Isra M. Altwaim, Sarah A. Sahoo, Amaresh Kumar Dwivedi, Vivek Dhar Azhar, Esam Ibraheem Viruses Article Monkeypox virus (MPXV) is a member of the Orthopoxvirus genus and the Poxviridae family, which instigated a rising epidemic called monkeypox disease. Proteinases are majorly engaged in viral propagation by catalyzing the cleavage of precursor polyproteins. Therefore, proteinase is essential for monkeypox and a critical drug target. In this study, high-throughput virtual screening (HTVS) and molecular dynamics simulation were applied to detect the potential natural compounds against the proteinase of the monkeypox virus. Here, 32,552 natural products were screened, and the top five compounds were selected after implementing the HTVS and molecular docking protocols in series. Gallicynoic Acid F showed the minimum binding score of −10.56 kcal/mole in the extra precision scoring method, which reflected the highest binding with the protein. The top five compounds showed binding scores ≤−8.98 kcal/mole. These compound complexes were tested under 100 ns molecular dynamics simulation, and Vaccinol M showed the most stable and consistent RMSD trend in the range of 2 Å to 3 Å. Later, MM/GBSA binding free energy and principal component analysis were performed on the top five compounds to validate the stability of selected compound complexes. Moreover, the ligands Gallicynoic Acid F and H2-Erythro-Neopterin showed the lowest binding free energies of −61.42 kcal/mol and −61.09 kcal/mol, respectively. Compared to the native ligand TTP-6171 (ΔG(Bind) = −53.86 kcal/mol), these two compounds showed preferable binding free energy, suggesting inhibitory application against MPXV proteinase. This study proposed natural molecules as a therapeutic solution to control monkeypox disease. MDPI 2023-01-16 /pmc/articles/PMC9861291/ /pubmed/36680291 http://dx.doi.org/10.3390/v15010251 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Dubey, Amit Alawi, Maha M. Alandijany, Thamir A. Alsaady, Isra M. Altwaim, Sarah A. Sahoo, Amaresh Kumar Dwivedi, Vivek Dhar Azhar, Esam Ibraheem Exploration of Microbially Derived Natural Compounds against Monkeypox Virus as Viral Core Cysteine Proteinase Inhibitors |
title | Exploration of Microbially Derived Natural Compounds against Monkeypox Virus as Viral Core Cysteine Proteinase Inhibitors |
title_full | Exploration of Microbially Derived Natural Compounds against Monkeypox Virus as Viral Core Cysteine Proteinase Inhibitors |
title_fullStr | Exploration of Microbially Derived Natural Compounds against Monkeypox Virus as Viral Core Cysteine Proteinase Inhibitors |
title_full_unstemmed | Exploration of Microbially Derived Natural Compounds against Monkeypox Virus as Viral Core Cysteine Proteinase Inhibitors |
title_short | Exploration of Microbially Derived Natural Compounds against Monkeypox Virus as Viral Core Cysteine Proteinase Inhibitors |
title_sort | exploration of microbially derived natural compounds against monkeypox virus as viral core cysteine proteinase inhibitors |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9861291/ https://www.ncbi.nlm.nih.gov/pubmed/36680291 http://dx.doi.org/10.3390/v15010251 |
work_keys_str_mv | AT dubeyamit explorationofmicrobiallyderivednaturalcompoundsagainstmonkeypoxvirusasviralcorecysteineproteinaseinhibitors AT alawimaham explorationofmicrobiallyderivednaturalcompoundsagainstmonkeypoxvirusasviralcorecysteineproteinaseinhibitors AT alandijanythamira explorationofmicrobiallyderivednaturalcompoundsagainstmonkeypoxvirusasviralcorecysteineproteinaseinhibitors AT alsaadyisram explorationofmicrobiallyderivednaturalcompoundsagainstmonkeypoxvirusasviralcorecysteineproteinaseinhibitors AT altwaimsaraha explorationofmicrobiallyderivednaturalcompoundsagainstmonkeypoxvirusasviralcorecysteineproteinaseinhibitors AT sahooamareshkumar explorationofmicrobiallyderivednaturalcompoundsagainstmonkeypoxvirusasviralcorecysteineproteinaseinhibitors AT dwivedivivekdhar explorationofmicrobiallyderivednaturalcompoundsagainstmonkeypoxvirusasviralcorecysteineproteinaseinhibitors AT azharesamibraheem explorationofmicrobiallyderivednaturalcompoundsagainstmonkeypoxvirusasviralcorecysteineproteinaseinhibitors |