Cargando…

The Infection Rate of Bird-Feeding Ixodes ricinus Ticks with Borrelia garinii and B. valaisiana Varies with Host Haemosporidian Infection Status

Background: Birds are known to maintain and spread human pathogenic borreliae, but they are common hosts of diverse parasite communities, notably haemosporidians. Only a few studies examined whether tick infestation and/or Borrelia prevalences vary with hosts’ haemosporidian infection status. Method...

Descripción completa

Detalles Bibliográficos
Autores principales: Šujanová, Alžbeta, Čužiová, Zuzana, Václav, Radovan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9861293/
https://www.ncbi.nlm.nih.gov/pubmed/36677352
http://dx.doi.org/10.3390/microorganisms11010060
Descripción
Sumario:Background: Birds are known to maintain and spread human pathogenic borreliae, but they are common hosts of diverse parasite communities, notably haemosporidians. Only a few studies examined whether tick infestation and/or Borrelia prevalences vary with hosts’ haemosporidian infection status. Methods: Here, we study whether Ixodes ricinus infestation rates and Borrelia infection rates in bird-feeding ticks vary according to haemosporidian infection status in a community of free-living avian tick hosts. Results: Birds of six avian species harbored the majority of ticks. Both the tick infestation prevalence and the intensity peaked during spring and summer, but while bird-feeding nymphs prevailed in spring, bird-feeding larvae dominated in summer. Almost half of the bird-feeding ticks were found to be positive for B. burgdorferi s.l. Although the majority of infections involved bird-associated B. garinii and B. valaisiana, B. garinii appears to be the dominant Borrelia strain circulating in locally breeding avian species. We detected a negative link between the hosts’ haemosporidian infection status and the Borrelia infection rate of bird-feeding ticks, but the association was dependent on the host’s age. Conclusions: Our results on tick infestation intensity support the idea that more immunologically vulnerable hosts harbor more ticks but suggest that different mechanisms may be responsible for tick infestation rates among immunologically naïve and experienced avian hosts. The results on Borrelia infection rates in bird-feeding ticks are consistent with studies revealing that intracellular parasites, such as haemosporidians, can benefit from the host immune system prioritizing immune responses against extracellular parasites at the expense of immune responses against intracellular parasites. The findings of our study urge for a more robust design of parasitological studies to understand the ecology of interactions among hosts and their parasites.