Cargando…
rox: A Statistical Model for Regression with Missing Values
High-dimensional omics datasets frequently contain missing data points, which typically occur due to concentrations below the limit of detection (LOD) of the profiling platform. The presence of such missing values significantly limits downstream statistical analysis and result interpretation. Two co...
Autores principales: | Buyukozkan, Mustafa, Benedetti, Elisa, Krumsiek, Jan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9861384/ https://www.ncbi.nlm.nih.gov/pubmed/36677052 http://dx.doi.org/10.3390/metabo13010127 |
Ejemplares similares
-
SGI: automatic clinical subgroup identification in omics datasets
por: Buyukozkan, Mustafa, et al.
Publicado: (2021) -
maplet: an extensible R toolbox for modular and reproducible metabolomics pipelines
por: Chetnik, Kelsey, et al.
Publicado: (2021) -
Advantages and limitations of the ROX index
por: Gallardo, A., et al.
Publicado: (2022) -
Logistic regression with missing values in the covariates
por: Vach, Werner
Publicado: (1994) -
A multimodal atlas of tumour metabolism reveals the architecture of gene–metabolite covariation
por: Benedetti, Elisa, et al.
Publicado: (2023)