Cargando…

Recent Advances in Pharmaceutical Cocrystals: A Focused Review of Flavonoid Cocrystals

Cocrystallization is currently an attractive technique for tailoring the physicochemical properties of active pharmaceutical ingredients (APIs). Flavonoids are a large class of natural products with a wide range of beneficial properties, including anticancer, anti-inflammatory, antiviral and antioxi...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Jia, Shi, Qin, Wang, Yanan, Wang, Yong, Xin, Junbo, Cheng, Jin, Li, Fang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9861466/
https://www.ncbi.nlm.nih.gov/pubmed/36677670
http://dx.doi.org/10.3390/molecules28020613
Descripción
Sumario:Cocrystallization is currently an attractive technique for tailoring the physicochemical properties of active pharmaceutical ingredients (APIs). Flavonoids are a large class of natural products with a wide range of beneficial properties, including anticancer, anti-inflammatory, antiviral and antioxidant properties, which makes them extensively studied. In order to improve the properties of flavonoids, such as solubility and bioavailability, the formation of cocrystals may be a feasible strategy. This review discusses in detail the possible hydrogen bond sites in the structure of APIs and the hydrogen bonding networks in the cocrystal structures, which will be beneficial for the targeted synthesis of flavonoid cocrystals. In addition, some successful studies that favorably alter the physicochemical properties of APIs through cocrystallization with coformers are also highlighted here. In addition to improving the solubility and bioavailability of flavonoids in most cases, flavonoid cocrystals may also alter their other properties, such as anti-inflammatory activity and photoluminescence properties.