Cargando…

Reproducibility and Scientific Integrity of Big Data Research in Urban Public Health and Digital Epidemiology: A Call to Action

The emergence of big data science presents a unique opportunity to improve public-health research practices. Because working with big data is inherently complex, big data research must be clear and transparent to avoid reproducibility issues and positively impact population health. Timely implementa...

Descripción completa

Detalles Bibliográficos
Autores principales: Quiroga Gutierrez, Ana Cecilia, Lindegger, Daniel J., Taji Heravi, Ala, Stojanov, Thomas, Sykora, Martin, Elayan, Suzanne, Mooney, Stephen J., Naslund, John A., Fadda, Marta, Gruebner, Oliver
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9861515/
https://www.ncbi.nlm.nih.gov/pubmed/36674225
http://dx.doi.org/10.3390/ijerph20021473
_version_ 1784874860736937984
author Quiroga Gutierrez, Ana Cecilia
Lindegger, Daniel J.
Taji Heravi, Ala
Stojanov, Thomas
Sykora, Martin
Elayan, Suzanne
Mooney, Stephen J.
Naslund, John A.
Fadda, Marta
Gruebner, Oliver
author_facet Quiroga Gutierrez, Ana Cecilia
Lindegger, Daniel J.
Taji Heravi, Ala
Stojanov, Thomas
Sykora, Martin
Elayan, Suzanne
Mooney, Stephen J.
Naslund, John A.
Fadda, Marta
Gruebner, Oliver
author_sort Quiroga Gutierrez, Ana Cecilia
collection PubMed
description The emergence of big data science presents a unique opportunity to improve public-health research practices. Because working with big data is inherently complex, big data research must be clear and transparent to avoid reproducibility issues and positively impact population health. Timely implementation of solution-focused approaches is critical as new data sources and methods take root in public-health research, including urban public health and digital epidemiology. This commentary highlights methodological and analytic approaches that can reduce research waste and improve the reproducibility and replicability of big data research in public health. The recommendations described in this commentary, including a focus on practices, publication norms, and education, are neither exhaustive nor unique to big data, but, nonetheless, implementing them can broadly improve public-health research. Clearly defined and openly shared guidelines will not only improve the quality of current research practices but also initiate change at multiple levels: the individual level, the institutional level, and the international level.
format Online
Article
Text
id pubmed-9861515
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-98615152023-01-22 Reproducibility and Scientific Integrity of Big Data Research in Urban Public Health and Digital Epidemiology: A Call to Action Quiroga Gutierrez, Ana Cecilia Lindegger, Daniel J. Taji Heravi, Ala Stojanov, Thomas Sykora, Martin Elayan, Suzanne Mooney, Stephen J. Naslund, John A. Fadda, Marta Gruebner, Oliver Int J Environ Res Public Health Commentary The emergence of big data science presents a unique opportunity to improve public-health research practices. Because working with big data is inherently complex, big data research must be clear and transparent to avoid reproducibility issues and positively impact population health. Timely implementation of solution-focused approaches is critical as new data sources and methods take root in public-health research, including urban public health and digital epidemiology. This commentary highlights methodological and analytic approaches that can reduce research waste and improve the reproducibility and replicability of big data research in public health. The recommendations described in this commentary, including a focus on practices, publication norms, and education, are neither exhaustive nor unique to big data, but, nonetheless, implementing them can broadly improve public-health research. Clearly defined and openly shared guidelines will not only improve the quality of current research practices but also initiate change at multiple levels: the individual level, the institutional level, and the international level. MDPI 2023-01-13 /pmc/articles/PMC9861515/ /pubmed/36674225 http://dx.doi.org/10.3390/ijerph20021473 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Commentary
Quiroga Gutierrez, Ana Cecilia
Lindegger, Daniel J.
Taji Heravi, Ala
Stojanov, Thomas
Sykora, Martin
Elayan, Suzanne
Mooney, Stephen J.
Naslund, John A.
Fadda, Marta
Gruebner, Oliver
Reproducibility and Scientific Integrity of Big Data Research in Urban Public Health and Digital Epidemiology: A Call to Action
title Reproducibility and Scientific Integrity of Big Data Research in Urban Public Health and Digital Epidemiology: A Call to Action
title_full Reproducibility and Scientific Integrity of Big Data Research in Urban Public Health and Digital Epidemiology: A Call to Action
title_fullStr Reproducibility and Scientific Integrity of Big Data Research in Urban Public Health and Digital Epidemiology: A Call to Action
title_full_unstemmed Reproducibility and Scientific Integrity of Big Data Research in Urban Public Health and Digital Epidemiology: A Call to Action
title_short Reproducibility and Scientific Integrity of Big Data Research in Urban Public Health and Digital Epidemiology: A Call to Action
title_sort reproducibility and scientific integrity of big data research in urban public health and digital epidemiology: a call to action
topic Commentary
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9861515/
https://www.ncbi.nlm.nih.gov/pubmed/36674225
http://dx.doi.org/10.3390/ijerph20021473
work_keys_str_mv AT quirogagutierrezanacecilia reproducibilityandscientificintegrityofbigdataresearchinurbanpublichealthanddigitalepidemiologyacalltoaction
AT lindeggerdanielj reproducibilityandscientificintegrityofbigdataresearchinurbanpublichealthanddigitalepidemiologyacalltoaction
AT tajiheraviala reproducibilityandscientificintegrityofbigdataresearchinurbanpublichealthanddigitalepidemiologyacalltoaction
AT stojanovthomas reproducibilityandscientificintegrityofbigdataresearchinurbanpublichealthanddigitalepidemiologyacalltoaction
AT sykoramartin reproducibilityandscientificintegrityofbigdataresearchinurbanpublichealthanddigitalepidemiologyacalltoaction
AT elayansuzanne reproducibilityandscientificintegrityofbigdataresearchinurbanpublichealthanddigitalepidemiologyacalltoaction
AT mooneystephenj reproducibilityandscientificintegrityofbigdataresearchinurbanpublichealthanddigitalepidemiologyacalltoaction
AT naslundjohna reproducibilityandscientificintegrityofbigdataresearchinurbanpublichealthanddigitalepidemiologyacalltoaction
AT faddamarta reproducibilityandscientificintegrityofbigdataresearchinurbanpublichealthanddigitalepidemiologyacalltoaction
AT gruebneroliver reproducibilityandscientificintegrityofbigdataresearchinurbanpublichealthanddigitalepidemiologyacalltoaction