Cargando…
Subacute Ruminal Acidosis as a Potential Factor that Induces Endometrium Injury in Sheep
The demand for economic benefits has led to an increase in the proportion of high-concentrate (HC) feed in the ruminant diet, resulting in an increased incidence of subacute ruminal acidosis (SARA). During SARA, a high concentration of lipopolysaccharide (LPS) translocated in the rumen induces a sys...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9861559/ https://www.ncbi.nlm.nih.gov/pubmed/36674716 http://dx.doi.org/10.3390/ijms24021192 |
Sumario: | The demand for economic benefits has led to an increase in the proportion of high-concentrate (HC) feed in the ruminant diet, resulting in an increased incidence of subacute ruminal acidosis (SARA). During SARA, a high concentration of lipopolysaccharide (LPS) translocated in the rumen induces a systemic inflammatory response. Inflammatory diseases, such as endometritis and mastitis, are often associated with SARA; however, in sheep, the mechanism of the effect of SARA on the endometrium has rarely been reported. Therefore, the aim of this study was to investigate, for the first time, the influence of LPS translocation on endometrial tight junctions (TJs) during SARA in sheep. The results showed that LPS and TNFα levels in the ruminal fluid, serum, and endometrial tissue supernatant during SARA increased, transcription levels of TLR4, NFκB, and TNFα in the endometrium increased, the protein expression level of claudin-1 in the endometrium increased, and the protein expression level of occludin decreased. 17β-estradiol (E(2)) inhibits claudin-1 protein expression and promotes occludin expression, and progesterone (P(4)) promotes claudin-1 protein expression and inhibits occludin protein expression. E(2) and P(4) regulate claudin-1 and occludin protein expression through their receptor pathways. Here, we found that LPS hindered the regulatory effect of E(2) and P(4) on endometrial TJs by inhibiting their receptor expression. The results of this study indicate that HC feeding can cause SARA-induced LPS translocation in sheep, increase susceptibility to systemic inflammation, induce the endometrial inflammatory response, and cause endometrial epithelial TJ damage directly and/or by obstructing E(2) and P(4) function. LPS translocation caused by SARA has also been suggested to induce an endometrial inflammatory response, resulting in endometrial epithelial barrier damage and physiological dysfunction, which seriously affects ruminant production. Therefore, this study provides new evidence that SARA is a potential factor that induces systemic inflammation in ruminants. It provides theoretical support for research on the prevention of endometritis in ruminants. |
---|