Cargando…
MD-GCN: A Multi-Scale Temporal Dual Graph Convolution Network for Traffic Flow Prediction
The spatial–temporal prediction of traffic flow is very important for traffic management and planning. The most difficult challenges of traffic flow prediction are the temporal feature extraction and the spatial correlation extraction of nodes. Due to the complex spatial correlation between differen...
Autores principales: | Huang, Xiaohui, Wang, Junyang, Lan, Yuanchun, Jiang, Chaojie, Yuan, Xinhua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9861593/ https://www.ncbi.nlm.nih.gov/pubmed/36679639 http://dx.doi.org/10.3390/s23020841 |
Ejemplares similares
-
DualGCN: a dual graph convolutional network model to predict cancer drug response
por: Ma, Tianxing, et al.
Publicado: (2022) -
Highway traffic flow prediction model with multi-component spatial–temporal graph convolution networks
por: Ning, Tao, et al.
Publicado: (2022) -
STHSGCN: Spatial-temporal heterogeneous and synchronous graph convolution network for traffic flow prediction
por: Yu, Xian, et al.
Publicado: (2023) -
Cross-Attention Fusion Based Spatial-Temporal Multi-Graph Convolutional Network for Traffic Flow Prediction
por: Yu, Kun, et al.
Publicado: (2021) -
Graph Convolutional Network: Traffic Speed Prediction Fused with Traffic Flow Data
por: Liu, Duanyang, et al.
Publicado: (2021)