Cargando…
N-3 PUFA Deficiency Aggravates Streptozotocin-Induced Pancreatic Injury in Mice but Dietary Supplementation with DHA/EPA Protects the Pancreas via Suppressing Inflammation, Oxidative Stress and Apoptosis
It has been reported that dietary n-3 polyunsaturated fatty acids (n-3 PUFAs) exert therapeutic potential for the preservation of functional β-cell mass. However, the effect of dietary n-3 PUFA deficiency on pancreatic injury and whether the supplementation of n-3 PUFA could prevent the development...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9861647/ https://www.ncbi.nlm.nih.gov/pubmed/36662212 http://dx.doi.org/10.3390/md21010039 |
Sumario: | It has been reported that dietary n-3 polyunsaturated fatty acids (n-3 PUFAs) exert therapeutic potential for the preservation of functional β-cell mass. However, the effect of dietary n-3 PUFA deficiency on pancreatic injury and whether the supplementation of n-3 PUFA could prevent the development of pancreatic injury are still not clear. In the present study, an n-3 PUFA deficiency mouse model was established by feeding them with n-3 PUFA deficiency diets for 30 days. Results showed that n-3 PUFA deficiency aggravated streptozotocin (STZ)-induced pancreas injury by reducing the insulin level by 18.21% and the HOMA β-cell indices by 31.13% and the area of islet by 52.58% compared with the STZ group. Moreover, pre-intervention with DHA and EPA for 15 days could alleviate STZ-induced pancreas damage by increasing the insulin level by 55.26% and 44.33%, the HOMA β-cell indices by 118.81% and 157.26% and reversed the area of islet by 196.75% and 205.57% compared to the n-3 Def group, and the effects were significant compared to γ-linolenic acid (GLA) and alpha-linolenic acid (ALA) treatment. The possible underlying mechanisms indicated that EPA and DHA significantly reduced the ration of n-6 PUFA to n-3 PUFA and then inhibited oxidative stress, inflammation and islet β-cell apoptosis levels in pancreas tissue. The results might provide insights into the prevention and alleviation of pancreas injury by dietary intervention with PUFAs and provide a theoretical basis for their application in functional foods. |
---|