Cargando…
Improving Generalizability of Spectral Reflectance Reconstruction Using L1-Norm Penalization
Spectral reflectance reconstruction for multispectral images (such as Weiner estimation) may perform sub-optimally when the object being measured has a texture that is not in the training set. The accuracy of the reconstruction is significantly lower without training samples. We propose an improved...
Autores principales: | Yao, Pengpeng, Wu, Hochung, Xin, John H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9861650/ https://www.ncbi.nlm.nih.gov/pubmed/36679486 http://dx.doi.org/10.3390/s23020689 |
Ejemplares similares
-
L(1)-norm based nonlinear reconstruction improves quantitative accuracy of spectral diffuse optical tomography
por: Lu, Wenqi, et al.
Publicado: (2018) -
An Algorithm of l(1)-Norm and l(0)-Norm Regularization Algorithm for CT Image Reconstruction from Limited Projection
por: Li, Xiezhang, et al.
Publicado: (2020) -
Applications of Spectral Gradient Algorithm for Solving Matrix ℓ(2,1)-Norm Minimization Problems in Machine Learning
por: Xiao, Yunhai, et al.
Publicado: (2016) -
Generalizability theory
por: Brennan, Robert L
Publicado: (2001) -
Concerns on Generalizability
por: Lin, Yongjian
Publicado: (2023)