Cargando…

Hierarchical Image Transformation and Multi-Level Features for Anomaly Defect Detection

Anomalies are a set of samples that do not follow the normal behavior of the majority of data. In an industrial dataset, anomalies appear in a very small number of samples. Currently, deep learning-based models have achieved important advances in image anomaly detection. However, with general models...

Descripción completa

Detalles Bibliográficos
Autores principales: Farady, Isack, Kuo, Chia-Chen, Ng, Hui-Fuang, Lin, Chih-Yang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9861680/
https://www.ncbi.nlm.nih.gov/pubmed/36679785
http://dx.doi.org/10.3390/s23020988
Descripción
Sumario:Anomalies are a set of samples that do not follow the normal behavior of the majority of data. In an industrial dataset, anomalies appear in a very small number of samples. Currently, deep learning-based models have achieved important advances in image anomaly detection. However, with general models, real-world application data consisting of non-ideal images, also known as poison images, become a challenge. When the work environment is not conducive to consistently acquiring a good or ideal sample, an additional adaptive learning model is needed. In this work, we design a potential methodology to tackle poison or non-ideal images that commonly appear in industrial production lines by enhancing the existing training data. We propose Hierarchical Image Transformation and Multi-level Features (HIT-MiLF) modules for an anomaly detection network to adapt to perturbances from novelties in testing images. This approach provides a hierarchical process for image transformation during pre-processing and explores the most efficient layer of extracted features from a CNN backbone. The model generates new transformations of training samples that simulate the non-ideal condition and learn the normality in high-dimensional features before applying a Gaussian mixture model to detect the anomalies from new data that it has never seen before. Our experimental results show that hierarchical transformation and multi-level feature exploration improve the baseline performance on industrial metal datasets.