Cargando…
DEML: Drug Synergy and Interaction Prediction Using Ensemble-Based Multi-Task Learning
Synergistic drug combinations have demonstrated effective therapeutic effects in cancer treatment. Deep learning methods accelerate identification of novel drug combinations by reducing the search space. However, potential adverse drug–drug interactions (DDIs), which may increase the risks for combi...
Autores principales: | Wang, Zhongming, Dong, Jiahui, Wu, Lianlian, Dai, Chong, Wang, Jing, Wen, Yuqi, Zhang, Yixin, Yang, Xiaoxi, He, Song, Bo, Xiaochen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9861702/ https://www.ncbi.nlm.nih.gov/pubmed/36677903 http://dx.doi.org/10.3390/molecules28020844 |
Ejemplares similares
-
Machine learning methods, databases and tools for drug combination prediction
por: Wu, Lianlian, et al.
Publicado: (2021) -
deML: robust demultiplexing of Illumina sequences using a likelihood-based approach
por: Renaud, Gabriel, et al.
Publicado: (2015) -
Computational methods, databases and tools for synthetic lethality prediction
por: Wang, Jing, et al.
Publicado: (2022) -
Multi-dimensional data integration algorithm based on random walk with restart
por: Wen, Yuqi, et al.
Publicado: (2021) -
An Algorithm Framework for Drug-Induced Liver Injury Prediction Based on Genetic Algorithm and Ensemble Learning
por: Yan, Bowei, et al.
Publicado: (2022)