Cargando…
Repeated Tick Infestations Impair Borrelia burgdorferi Transmission in a Non-Human Primate Model of Tick Feeding
The blacklegged tick, Ixodes scapularis, is the predominant vector of Borrelia burgdorferi, the agent of Lyme disease in the USA. Natural hosts of I. scapularis such as Peromyscus leucopus are repeatedly infested by these ticks without acquiring tick resistance. However, upon repeated tick infestati...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9861725/ https://www.ncbi.nlm.nih.gov/pubmed/36678479 http://dx.doi.org/10.3390/pathogens12010132 |
_version_ | 1784874913542176768 |
---|---|
author | Narasimhan, Sukanya Booth, Carmen J. Philipp, Mario T. Fikrig, Erol Embers, Monica E. |
author_facet | Narasimhan, Sukanya Booth, Carmen J. Philipp, Mario T. Fikrig, Erol Embers, Monica E. |
author_sort | Narasimhan, Sukanya |
collection | PubMed |
description | The blacklegged tick, Ixodes scapularis, is the predominant vector of Borrelia burgdorferi, the agent of Lyme disease in the USA. Natural hosts of I. scapularis such as Peromyscus leucopus are repeatedly infested by these ticks without acquiring tick resistance. However, upon repeated tick infestations, non-natural hosts such as guinea pigs, mount a robust immune response against critical tick salivary antigens and acquire tick resistance able to thwart tick feeding and Borrelia burgdorferi transmission. The salivary targets of acquired tick resistance could serve as vaccine targets to prevent tick feeding and the tick transmission of human pathogens. Currently, there is no animal model able to demonstrate both tick resistance and diverse clinical manifestations of Lyme disease. Non-human primates serve as robust models of human Lyme disease. By evaluating the responses to repeated tick infestation, this animal model could accelerate our ability to define the tick salivary targets of acquired resistance that may serve as vaccines to prevent the tick transmission of human pathogens. Towards this goal, we assessed the development of acquired tick resistance in non-human primates upon repeated tick infestations. We report that following repeated tick infestations, non-human primates do not develop the hallmarks of acquired tick resistance observed in guinea pigs. However, repeated tick infestations elicit immune responses able to impair the tick transmission of B. burgdorferi. A mechanistic understanding of the protective immune responses will provide insights into B. burgdorferi-tick–host interactions and additionally contribute to anti-tick vaccine discovery. |
format | Online Article Text |
id | pubmed-9861725 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-98617252023-01-22 Repeated Tick Infestations Impair Borrelia burgdorferi Transmission in a Non-Human Primate Model of Tick Feeding Narasimhan, Sukanya Booth, Carmen J. Philipp, Mario T. Fikrig, Erol Embers, Monica E. Pathogens Article The blacklegged tick, Ixodes scapularis, is the predominant vector of Borrelia burgdorferi, the agent of Lyme disease in the USA. Natural hosts of I. scapularis such as Peromyscus leucopus are repeatedly infested by these ticks without acquiring tick resistance. However, upon repeated tick infestations, non-natural hosts such as guinea pigs, mount a robust immune response against critical tick salivary antigens and acquire tick resistance able to thwart tick feeding and Borrelia burgdorferi transmission. The salivary targets of acquired tick resistance could serve as vaccine targets to prevent tick feeding and the tick transmission of human pathogens. Currently, there is no animal model able to demonstrate both tick resistance and diverse clinical manifestations of Lyme disease. Non-human primates serve as robust models of human Lyme disease. By evaluating the responses to repeated tick infestation, this animal model could accelerate our ability to define the tick salivary targets of acquired resistance that may serve as vaccines to prevent the tick transmission of human pathogens. Towards this goal, we assessed the development of acquired tick resistance in non-human primates upon repeated tick infestations. We report that following repeated tick infestations, non-human primates do not develop the hallmarks of acquired tick resistance observed in guinea pigs. However, repeated tick infestations elicit immune responses able to impair the tick transmission of B. burgdorferi. A mechanistic understanding of the protective immune responses will provide insights into B. burgdorferi-tick–host interactions and additionally contribute to anti-tick vaccine discovery. MDPI 2023-01-13 /pmc/articles/PMC9861725/ /pubmed/36678479 http://dx.doi.org/10.3390/pathogens12010132 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Narasimhan, Sukanya Booth, Carmen J. Philipp, Mario T. Fikrig, Erol Embers, Monica E. Repeated Tick Infestations Impair Borrelia burgdorferi Transmission in a Non-Human Primate Model of Tick Feeding |
title | Repeated Tick Infestations Impair Borrelia burgdorferi Transmission in a Non-Human Primate Model of Tick Feeding |
title_full | Repeated Tick Infestations Impair Borrelia burgdorferi Transmission in a Non-Human Primate Model of Tick Feeding |
title_fullStr | Repeated Tick Infestations Impair Borrelia burgdorferi Transmission in a Non-Human Primate Model of Tick Feeding |
title_full_unstemmed | Repeated Tick Infestations Impair Borrelia burgdorferi Transmission in a Non-Human Primate Model of Tick Feeding |
title_short | Repeated Tick Infestations Impair Borrelia burgdorferi Transmission in a Non-Human Primate Model of Tick Feeding |
title_sort | repeated tick infestations impair borrelia burgdorferi transmission in a non-human primate model of tick feeding |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9861725/ https://www.ncbi.nlm.nih.gov/pubmed/36678479 http://dx.doi.org/10.3390/pathogens12010132 |
work_keys_str_mv | AT narasimhansukanya repeatedtickinfestationsimpairborreliaburgdorferitransmissioninanonhumanprimatemodeloftickfeeding AT boothcarmenj repeatedtickinfestationsimpairborreliaburgdorferitransmissioninanonhumanprimatemodeloftickfeeding AT philippmariot repeatedtickinfestationsimpairborreliaburgdorferitransmissioninanonhumanprimatemodeloftickfeeding AT fikrigerol repeatedtickinfestationsimpairborreliaburgdorferitransmissioninanonhumanprimatemodeloftickfeeding AT embersmonicae repeatedtickinfestationsimpairborreliaburgdorferitransmissioninanonhumanprimatemodeloftickfeeding |