Cargando…

Transcriptomic Analysis of Resistant and Wild-Type Botrytis cinerea Isolates Revealed Fludioxonil-Resistance Mechanisms

Botrytis cinerea, the causal agent of gray mold, is one of the most destructive pathogens of cherry tomatoes, causing fruit decay and economic loss. Fludioxonil is an effective fungicide widely used for crop protection and is effective against tomato gray mold. The emergence of fungicide-resistant s...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Mei, Peng, Junbo, Wang, Xuncheng, Zhang, Wei, Zhou, Ying, Wang, Hui, Li, Xinghong, Yan, Jiye, Duan, Liusheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9861754/
https://www.ncbi.nlm.nih.gov/pubmed/36674501
http://dx.doi.org/10.3390/ijms24020988
_version_ 1784874920848654336
author Liu, Mei
Peng, Junbo
Wang, Xuncheng
Zhang, Wei
Zhou, Ying
Wang, Hui
Li, Xinghong
Yan, Jiye
Duan, Liusheng
author_facet Liu, Mei
Peng, Junbo
Wang, Xuncheng
Zhang, Wei
Zhou, Ying
Wang, Hui
Li, Xinghong
Yan, Jiye
Duan, Liusheng
author_sort Liu, Mei
collection PubMed
description Botrytis cinerea, the causal agent of gray mold, is one of the most destructive pathogens of cherry tomatoes, causing fruit decay and economic loss. Fludioxonil is an effective fungicide widely used for crop protection and is effective against tomato gray mold. The emergence of fungicide-resistant strains has made the control of B. cinerea more difficult. While the genome of B. cinerea is available, there are few reports regarding the large-scale functional annotation of the genome using expressed genes derived from transcriptomes, and the mechanism(s) underlying such fludioxonil resistance remain unclear. The present study prepared RNA-sequencing (RNA-seq) libraries for three B. cinerea strains (two highly resistant (LR and FR) versus one highly sensitive (S) to fludioxonil), with and without fludioxonil treatment, to identify fludioxonil responsive genes that associated to fungicide resistance. Functional enrichment analysis identified nine resistance related DEGs in the fludioxonil-induced LR and FR transcriptome that were simultaneously up-regulated, and seven resistance related DEGs down-regulated. These included adenosine triphosphate (ATP)-binding cassette (ABC) transporter-encoding genes, major facilitator superfamily (MFS) transporter-encoding genes, and the high-osmolarity glycerol (HOG) pathway homologues or related genes. The expression patterns of twelve out of the sixteen fludioxonil-responsive genes, obtained from the RNA-sequence data sets, were validated using quantitative real-time PCR (qRT-PCR). Based on RNA-sequence analysis, it was found that hybrid histidine kinase, fungal HHKs, such as BOS1, BcHHK2, and BcHHK17, probably involved in the fludioxonil resistance of B. cinerea, in addition, a number of ABC and MFS transporter genes that were not reported before, such as BcATRO, BMR1, BMR3, BcNMT1, BcAMF1, BcTOP1, BcVBA2, and BcYHK8, were differentially expressed in the fludioxonil-resistant strains, indicating that overexpression of these efflux transporters located in the plasma membranes may associate with the fludioxonil resistance mechanism of B. cinerea. All together, these lines of evidence allowed us to draw a general portrait of the anti-fludioxonil mechanisms for B. cinerea, and the assembled and annotated transcriptome data provide valuable genomic resources for further study of the molecular mechanisms of B. cinerea resistance to fludioxonil.
format Online
Article
Text
id pubmed-9861754
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-98617542023-01-22 Transcriptomic Analysis of Resistant and Wild-Type Botrytis cinerea Isolates Revealed Fludioxonil-Resistance Mechanisms Liu, Mei Peng, Junbo Wang, Xuncheng Zhang, Wei Zhou, Ying Wang, Hui Li, Xinghong Yan, Jiye Duan, Liusheng Int J Mol Sci Article Botrytis cinerea, the causal agent of gray mold, is one of the most destructive pathogens of cherry tomatoes, causing fruit decay and economic loss. Fludioxonil is an effective fungicide widely used for crop protection and is effective against tomato gray mold. The emergence of fungicide-resistant strains has made the control of B. cinerea more difficult. While the genome of B. cinerea is available, there are few reports regarding the large-scale functional annotation of the genome using expressed genes derived from transcriptomes, and the mechanism(s) underlying such fludioxonil resistance remain unclear. The present study prepared RNA-sequencing (RNA-seq) libraries for three B. cinerea strains (two highly resistant (LR and FR) versus one highly sensitive (S) to fludioxonil), with and without fludioxonil treatment, to identify fludioxonil responsive genes that associated to fungicide resistance. Functional enrichment analysis identified nine resistance related DEGs in the fludioxonil-induced LR and FR transcriptome that were simultaneously up-regulated, and seven resistance related DEGs down-regulated. These included adenosine triphosphate (ATP)-binding cassette (ABC) transporter-encoding genes, major facilitator superfamily (MFS) transporter-encoding genes, and the high-osmolarity glycerol (HOG) pathway homologues or related genes. The expression patterns of twelve out of the sixteen fludioxonil-responsive genes, obtained from the RNA-sequence data sets, were validated using quantitative real-time PCR (qRT-PCR). Based on RNA-sequence analysis, it was found that hybrid histidine kinase, fungal HHKs, such as BOS1, BcHHK2, and BcHHK17, probably involved in the fludioxonil resistance of B. cinerea, in addition, a number of ABC and MFS transporter genes that were not reported before, such as BcATRO, BMR1, BMR3, BcNMT1, BcAMF1, BcTOP1, BcVBA2, and BcYHK8, were differentially expressed in the fludioxonil-resistant strains, indicating that overexpression of these efflux transporters located in the plasma membranes may associate with the fludioxonil resistance mechanism of B. cinerea. All together, these lines of evidence allowed us to draw a general portrait of the anti-fludioxonil mechanisms for B. cinerea, and the assembled and annotated transcriptome data provide valuable genomic resources for further study of the molecular mechanisms of B. cinerea resistance to fludioxonil. MDPI 2023-01-04 /pmc/articles/PMC9861754/ /pubmed/36674501 http://dx.doi.org/10.3390/ijms24020988 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Liu, Mei
Peng, Junbo
Wang, Xuncheng
Zhang, Wei
Zhou, Ying
Wang, Hui
Li, Xinghong
Yan, Jiye
Duan, Liusheng
Transcriptomic Analysis of Resistant and Wild-Type Botrytis cinerea Isolates Revealed Fludioxonil-Resistance Mechanisms
title Transcriptomic Analysis of Resistant and Wild-Type Botrytis cinerea Isolates Revealed Fludioxonil-Resistance Mechanisms
title_full Transcriptomic Analysis of Resistant and Wild-Type Botrytis cinerea Isolates Revealed Fludioxonil-Resistance Mechanisms
title_fullStr Transcriptomic Analysis of Resistant and Wild-Type Botrytis cinerea Isolates Revealed Fludioxonil-Resistance Mechanisms
title_full_unstemmed Transcriptomic Analysis of Resistant and Wild-Type Botrytis cinerea Isolates Revealed Fludioxonil-Resistance Mechanisms
title_short Transcriptomic Analysis of Resistant and Wild-Type Botrytis cinerea Isolates Revealed Fludioxonil-Resistance Mechanisms
title_sort transcriptomic analysis of resistant and wild-type botrytis cinerea isolates revealed fludioxonil-resistance mechanisms
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9861754/
https://www.ncbi.nlm.nih.gov/pubmed/36674501
http://dx.doi.org/10.3390/ijms24020988
work_keys_str_mv AT liumei transcriptomicanalysisofresistantandwildtypebotrytiscinereaisolatesrevealedfludioxonilresistancemechanisms
AT pengjunbo transcriptomicanalysisofresistantandwildtypebotrytiscinereaisolatesrevealedfludioxonilresistancemechanisms
AT wangxuncheng transcriptomicanalysisofresistantandwildtypebotrytiscinereaisolatesrevealedfludioxonilresistancemechanisms
AT zhangwei transcriptomicanalysisofresistantandwildtypebotrytiscinereaisolatesrevealedfludioxonilresistancemechanisms
AT zhouying transcriptomicanalysisofresistantandwildtypebotrytiscinereaisolatesrevealedfludioxonilresistancemechanisms
AT wanghui transcriptomicanalysisofresistantandwildtypebotrytiscinereaisolatesrevealedfludioxonilresistancemechanisms
AT lixinghong transcriptomicanalysisofresistantandwildtypebotrytiscinereaisolatesrevealedfludioxonilresistancemechanisms
AT yanjiye transcriptomicanalysisofresistantandwildtypebotrytiscinereaisolatesrevealedfludioxonilresistancemechanisms
AT duanliusheng transcriptomicanalysisofresistantandwildtypebotrytiscinereaisolatesrevealedfludioxonilresistancemechanisms