Cargando…
Auguring Fake Face Images Using Dual Input Convolution Neural Network
Deepfake technology uses auto-encoders and generative adversarial networks to replace or artificially construct fine-tuned faces, emotions, and sounds. Although there have been significant advancements in the identification of particular fake images, a reliable counterfeit face detector is still lac...
Autores principales: | Bhandari, Mohan, Neupane, Arjun, Mallik, Saurav, Gaur, Loveleen, Qin, Hong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9861767/ https://www.ncbi.nlm.nih.gov/pubmed/36662101 http://dx.doi.org/10.3390/jimaging9010003 |
Ejemplares similares
-
Explanation-Driven Deep Learning Model for Prediction of Brain Tumour Status Using MRI Image Data
por: Gaur, Loveleen, et al.
Publicado: (2022) -
DC-CNN: Dual-channel Convolutional Neural Networks with attention-pooling for fake news detection
por: Ma, Kun, et al.
Publicado: (2022) -
Designing optimal convolutional neural network architecture using differential evolution algorithm
por: Ghosh, Arjun, et al.
Publicado: (2022) -
Medical image-based detection of COVID-19 using Deep Convolution Neural Networks
por: Gaur, Loveleen, et al.
Publicado: (2021) -
Breast cancer detection: Shallow convolutional neural network against deep convolutional neural networks based approach
por: Das, Himanish Shekhar, et al.
Publicado: (2023)