Cargando…
HMNet: Hierarchical Multi-Scale Brain Tumor Segmentation Network
An accurate and efficient automatic brain tumor segmentation algorithm is important for clinical practice. In recent years, there has been much interest in automatic segmentation algorithms that use convolutional neural networks. In this paper, we propose a novel hierarchical multi-scale segmentatio...
Autores principales: | Zhang, Ruifeng, Jia, Shasha, Adamu, Mohammed Jajere, Nie, Weizhi, Li, Qiang, Wu, Ting |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9861819/ https://www.ncbi.nlm.nih.gov/pubmed/36675470 http://dx.doi.org/10.3390/jcm12020538 |
Ejemplares similares
-
Dynamic hierarchical multi-scale fusion network with axial MLP for medical image segmentation
por: Cheng, Zhikun, et al.
Publicado: (2023) -
A lightweight hierarchical convolution network for brain tumor segmentation
por: Wang, Yuhu, et al.
Publicado: (2022) -
High-Resolution Network with Dynamic Convolution and Coordinate Attention for Classification of Chest X-ray Images
por: Li, Qiang, et al.
Publicado: (2023) -
Multi-scale detection of hierarchical community architecture in structural and functional brain networks
por: Ashourvan, Arian, et al.
Publicado: (2019) -
Selective Deeply Supervised Multi-Scale Attention Network for Brain Tumor Segmentation
por: Rehman, Azka, et al.
Publicado: (2023)