Cargando…

TAKEN: A Traffic Knowledge-Based Navigation System for Connected and Autonomous Vehicles

Connected and autonomous vehicles (CAVs) have witnessed significant attention from industries, and academia for research and developments towards the on-road realisation of the technology. State-of-the-art CAVs utilise existing navigation systems for mobility and travel path planning. However, relia...

Descripción completa

Detalles Bibliográficos
Autores principales: Kamath B, Nikhil, Fernandes, Roshan, Rodrigues, Anisha P., Mahmud, Mufti, Vijaya, P., Gadekallu, Thippa Reddy, Kaiser, M. Shamim
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9861979/
https://www.ncbi.nlm.nih.gov/pubmed/36679448
http://dx.doi.org/10.3390/s23020653
Descripción
Sumario:Connected and autonomous vehicles (CAVs) have witnessed significant attention from industries, and academia for research and developments towards the on-road realisation of the technology. State-of-the-art CAVs utilise existing navigation systems for mobility and travel path planning. However, reliable connectivity to navigation systems is not guaranteed, particularly in urban road traffic environments with high-rise buildings, nearby roads and multi-level flyovers. In this connection, this paper presents TAKEN-Traffic Knowledge-based Navigation for enabling CAVs in urban road traffic environments. A traffic analysis model is proposed for mining the sensor-oriented traffic data to generate a precise navigation path for the vehicle. A knowledge-sharing method is developed for collecting and generating new traffic knowledge from on-road vehicles. CAVs navigation is executed using the information enabled by traffic knowledge and analysis. The experimental performance evaluation results attest to the benefits of TAKEN in the precise navigation of CAVs in urban traffic environments.