Cargando…

NucEnvDB: A Database of Nuclear Envelope Proteins and Their Interactions

The nuclear envelope (NE) is a double-membrane system surrounding the nucleus of eukaryotic cells. A large number of proteins are localized in the NE, performing a wide variety of functions, from the bidirectional exchange of molecules between the cytoplasm and the nucleus to chromatin tethering, ge...

Descripción completa

Detalles Bibliográficos
Autores principales: Baltoumas, Fotis A., Sofras, Dimitrios, Apostolakou, Avgi E., Litou, Zoi I., Iconomidou, Vassiliki A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9861991/
https://www.ncbi.nlm.nih.gov/pubmed/36676869
http://dx.doi.org/10.3390/membranes13010062
Descripción
Sumario:The nuclear envelope (NE) is a double-membrane system surrounding the nucleus of eukaryotic cells. A large number of proteins are localized in the NE, performing a wide variety of functions, from the bidirectional exchange of molecules between the cytoplasm and the nucleus to chromatin tethering, genome organization, regulation of signaling cascades, and many others. Despite its importance, several aspects of the NE, including its protein–protein interactions, remain understudied. In this work, we present NucEnvDB, a publicly available database of NE proteins and their interactions. Each database entry contains useful annotation including a description of its position in the NE, its interactions with other proteins, and cross-references to major biological repositories. In addition, the database provides users with a number of visualization and analysis tools, including the ability to construct and visualize protein–protein interaction networks and perform functional enrichment analysis for clusters of NE proteins and their interaction partners. The capabilities of NucEnvDB and its analysis tools are showcased by two informative case studies, exploring protein–protein interactions in Hutchinson–Gilford progeria and during SARS-CoV-2 infection at the level of the nuclear envelope.