Cargando…

Translating Data Science Results into Precision Oncology Decisions: A Mini Review

While reviewing and discussing the potential of data science in oncology, we emphasize medical imaging and radiomics as the leading contextual frameworks to measure the impacts of Artificial Intelligence (AI) and Machine Learning (ML) developments. We envision some domains and research directions in...

Descripción completa

Detalles Bibliográficos
Autores principales: Capobianco, Enrico, Dominietto, Marco
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9862106/
https://www.ncbi.nlm.nih.gov/pubmed/36675367
http://dx.doi.org/10.3390/jcm12020438
_version_ 1784875010339373056
author Capobianco, Enrico
Dominietto, Marco
author_facet Capobianco, Enrico
Dominietto, Marco
author_sort Capobianco, Enrico
collection PubMed
description While reviewing and discussing the potential of data science in oncology, we emphasize medical imaging and radiomics as the leading contextual frameworks to measure the impacts of Artificial Intelligence (AI) and Machine Learning (ML) developments. We envision some domains and research directions in which radiomics should become more significant in view of current barriers and limitations.
format Online
Article
Text
id pubmed-9862106
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-98621062023-01-22 Translating Data Science Results into Precision Oncology Decisions: A Mini Review Capobianco, Enrico Dominietto, Marco J Clin Med Review While reviewing and discussing the potential of data science in oncology, we emphasize medical imaging and radiomics as the leading contextual frameworks to measure the impacts of Artificial Intelligence (AI) and Machine Learning (ML) developments. We envision some domains and research directions in which radiomics should become more significant in view of current barriers and limitations. MDPI 2023-01-05 /pmc/articles/PMC9862106/ /pubmed/36675367 http://dx.doi.org/10.3390/jcm12020438 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Review
Capobianco, Enrico
Dominietto, Marco
Translating Data Science Results into Precision Oncology Decisions: A Mini Review
title Translating Data Science Results into Precision Oncology Decisions: A Mini Review
title_full Translating Data Science Results into Precision Oncology Decisions: A Mini Review
title_fullStr Translating Data Science Results into Precision Oncology Decisions: A Mini Review
title_full_unstemmed Translating Data Science Results into Precision Oncology Decisions: A Mini Review
title_short Translating Data Science Results into Precision Oncology Decisions: A Mini Review
title_sort translating data science results into precision oncology decisions: a mini review
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9862106/
https://www.ncbi.nlm.nih.gov/pubmed/36675367
http://dx.doi.org/10.3390/jcm12020438
work_keys_str_mv AT capobiancoenrico translatingdatascienceresultsintoprecisiononcologydecisionsaminireview
AT dominiettomarco translatingdatascienceresultsintoprecisiononcologydecisionsaminireview