Cargando…
Optimization of Chitosan Extraction Process from Rapana venosa Egg Capsules Waste Using Experimental Design
New green and sustainable sources were chosen to obtain chitosan, an important material, with many applications in different fields. The present study is focused on egg capsules of Rapana venosa waste as raw material for chitosan oligomers. As previous studies revealed that chitosan extraction from...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9862177/ https://www.ncbi.nlm.nih.gov/pubmed/36676262 http://dx.doi.org/10.3390/ma16020525 |
Sumario: | New green and sustainable sources were chosen to obtain chitosan, an important material, with many applications in different fields. The present study is focused on egg capsules of Rapana venosa waste as raw material for chitosan oligomers. As previous studies revealed that chitosan extraction from this material takes place with a low yield, the present research aimed to optimize this step. A 2(2) experimental plan, with three replicates in the center, was proposed to investigate the influence of NaOH concentration and temperature on the yield extraction. After a primary analysis of the experimental data, a favorable temperature value was selected (90 °C) at which the total dissolution of the egg capsules was obtained. Then, at this temperature, the experimental plan was extended exploring the influence of the NaOH concentration on three levels (5, 6, and 7%) and the extraction duration on two levels (60 and 85 min). Based on all experimental data, a neural model was obtained and validated. The neural model was used to maximize the yield, applying Genetic Algorithm (GA) implemented in Matlab(®). The resulting optimal solution is: NaOH concentration 6.47%, temperature 90 °C, duration 120 min, with a yield value of 7.05%. |
---|