Cargando…
Microevolutionary dynamics of eccDNA in Chinese hamster ovary cells grown in fed-batch cultures under control and lactate-stressed conditions
Chinese hamster ovary (CHO) cell lines are widely used to manufacture biopharmaceuticals. However, CHO cells are not an optimal expression host due to the intrinsic plasticity of the CHO genome. Genome plasticity can lead to chromosomal rearrangements, transgene exclusion, and phenotypic drift. A po...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9862248/ https://www.ncbi.nlm.nih.gov/pubmed/36681715 http://dx.doi.org/10.1038/s41598-023-27962-0 |
_version_ | 1784875046030802944 |
---|---|
author | Chitwood, Dylan G. Wang, Qinghua Klaubert, Stephanie R. Green, Kiana Wu, Cathy H. Harcum, Sarah W. Saski, Christopher A. |
author_facet | Chitwood, Dylan G. Wang, Qinghua Klaubert, Stephanie R. Green, Kiana Wu, Cathy H. Harcum, Sarah W. Saski, Christopher A. |
author_sort | Chitwood, Dylan G. |
collection | PubMed |
description | Chinese hamster ovary (CHO) cell lines are widely used to manufacture biopharmaceuticals. However, CHO cells are not an optimal expression host due to the intrinsic plasticity of the CHO genome. Genome plasticity can lead to chromosomal rearrangements, transgene exclusion, and phenotypic drift. A poorly understood genomic element of CHO cell line instability is extrachromosomal circular DNA (eccDNA) in gene expression and regulation. EccDNA can facilitate ultra-high gene expression and are found within many eukaryotes including humans, yeast, and plants. EccDNA confers genetic heterogeneity, providing selective advantages to individual cells in response to dynamic environments. In CHO cell cultures, maintaining genetic homogeneity is critical to ensuring consistent productivity and product quality. Understanding eccDNA structure, function, and microevolutionary dynamics under various culture conditions could reveal potential engineering targets for cell line optimization. In this study, eccDNA sequences were investigated at the beginning and end of two-week fed-batch cultures in an ambr(®)250 bioreactor under control and lactate-stressed conditions. This work characterized structure and function of eccDNA in a CHO-K1 clone. Gene annotation identified 1551 unique eccDNA genes including cancer driver genes and genes involved in protein production. Furthermore, RNA-seq data is integrated to identify transcriptionally active eccDNA genes. |
format | Online Article Text |
id | pubmed-9862248 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-98622482023-01-23 Microevolutionary dynamics of eccDNA in Chinese hamster ovary cells grown in fed-batch cultures under control and lactate-stressed conditions Chitwood, Dylan G. Wang, Qinghua Klaubert, Stephanie R. Green, Kiana Wu, Cathy H. Harcum, Sarah W. Saski, Christopher A. Sci Rep Article Chinese hamster ovary (CHO) cell lines are widely used to manufacture biopharmaceuticals. However, CHO cells are not an optimal expression host due to the intrinsic plasticity of the CHO genome. Genome plasticity can lead to chromosomal rearrangements, transgene exclusion, and phenotypic drift. A poorly understood genomic element of CHO cell line instability is extrachromosomal circular DNA (eccDNA) in gene expression and regulation. EccDNA can facilitate ultra-high gene expression and are found within many eukaryotes including humans, yeast, and plants. EccDNA confers genetic heterogeneity, providing selective advantages to individual cells in response to dynamic environments. In CHO cell cultures, maintaining genetic homogeneity is critical to ensuring consistent productivity and product quality. Understanding eccDNA structure, function, and microevolutionary dynamics under various culture conditions could reveal potential engineering targets for cell line optimization. In this study, eccDNA sequences were investigated at the beginning and end of two-week fed-batch cultures in an ambr(®)250 bioreactor under control and lactate-stressed conditions. This work characterized structure and function of eccDNA in a CHO-K1 clone. Gene annotation identified 1551 unique eccDNA genes including cancer driver genes and genes involved in protein production. Furthermore, RNA-seq data is integrated to identify transcriptionally active eccDNA genes. Nature Publishing Group UK 2023-01-21 /pmc/articles/PMC9862248/ /pubmed/36681715 http://dx.doi.org/10.1038/s41598-023-27962-0 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Chitwood, Dylan G. Wang, Qinghua Klaubert, Stephanie R. Green, Kiana Wu, Cathy H. Harcum, Sarah W. Saski, Christopher A. Microevolutionary dynamics of eccDNA in Chinese hamster ovary cells grown in fed-batch cultures under control and lactate-stressed conditions |
title | Microevolutionary dynamics of eccDNA in Chinese hamster ovary cells grown in fed-batch cultures under control and lactate-stressed conditions |
title_full | Microevolutionary dynamics of eccDNA in Chinese hamster ovary cells grown in fed-batch cultures under control and lactate-stressed conditions |
title_fullStr | Microevolutionary dynamics of eccDNA in Chinese hamster ovary cells grown in fed-batch cultures under control and lactate-stressed conditions |
title_full_unstemmed | Microevolutionary dynamics of eccDNA in Chinese hamster ovary cells grown in fed-batch cultures under control and lactate-stressed conditions |
title_short | Microevolutionary dynamics of eccDNA in Chinese hamster ovary cells grown in fed-batch cultures under control and lactate-stressed conditions |
title_sort | microevolutionary dynamics of eccdna in chinese hamster ovary cells grown in fed-batch cultures under control and lactate-stressed conditions |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9862248/ https://www.ncbi.nlm.nih.gov/pubmed/36681715 http://dx.doi.org/10.1038/s41598-023-27962-0 |
work_keys_str_mv | AT chitwooddylang microevolutionarydynamicsofeccdnainchinesehamsterovarycellsgrowninfedbatchculturesundercontrolandlactatestressedconditions AT wangqinghua microevolutionarydynamicsofeccdnainchinesehamsterovarycellsgrowninfedbatchculturesundercontrolandlactatestressedconditions AT klaubertstephanier microevolutionarydynamicsofeccdnainchinesehamsterovarycellsgrowninfedbatchculturesundercontrolandlactatestressedconditions AT greenkiana microevolutionarydynamicsofeccdnainchinesehamsterovarycellsgrowninfedbatchculturesundercontrolandlactatestressedconditions AT wucathyh microevolutionarydynamicsofeccdnainchinesehamsterovarycellsgrowninfedbatchculturesundercontrolandlactatestressedconditions AT harcumsarahw microevolutionarydynamicsofeccdnainchinesehamsterovarycellsgrowninfedbatchculturesundercontrolandlactatestressedconditions AT saskichristophera microevolutionarydynamicsofeccdnainchinesehamsterovarycellsgrowninfedbatchculturesundercontrolandlactatestressedconditions |