Cargando…
Ensemble Machine-Learning-Based Prediction Models for the Compressive Strength of Recycled Powder Mortar
Recycled powder (RP) serves as a potential and prospective substitute for cementitious materials in concrete. The compressive strength of RP mortar is a pivotal factor affecting the mechanical properties of RP concrete. The application of machine learning (ML) approaches in the engineering problems,...
Autores principales: | Fei, Zhengyu, Liang, Shixue, Cai, Yiqing, Shen, Yuanxie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9862350/ https://www.ncbi.nlm.nih.gov/pubmed/36676320 http://dx.doi.org/10.3390/ma16020583 |
Ejemplares similares
-
Evaluating the effectiveness of waste glass powder for the compressive strength improvement of cement mortar using experimental and machine learning methods
por: Khan, Kaffayatullah, et al.
Publicado: (2023) -
Experimental and machine learning approaches to investigate the effect of waste glass powder on the flexural strength of cement mortar
por: Amin, Muhammad Nasir, et al.
Publicado: (2023) -
Analysis and Economic Evaluation of the Use of Recycled Polyamide Powder in Masonry Mortars
por: Salas, Miguel A., et al.
Publicado: (2020) -
Low-Carbon and Fundamental Properties of Eco-Efficient Mortar with Recycled Powders
por: Sun, Chang, et al.
Publicado: (2021) -
Prediction and multi-objective optimization of workability and compressive strength of recycled self-consolidating mortar using Taguchi design method
por: Bamshad, Omid, et al.
Publicado: (2023)