Cargando…

Accurate Crack Detection Based on Distributed Deep Learning for IoT Environment

Defects or cracks in roads, building walls, floors, and product surfaces can degrade the completeness of the product and become an impediment to quality control. Machine learning can be a solution for detecting defects effectively without human experts; however, the low-power computing device cannot...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Youngpil, Yi, Shinuk, Ahn, Hyunho, Hong, Cheol-Ho
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9862405/
https://www.ncbi.nlm.nih.gov/pubmed/36679655
http://dx.doi.org/10.3390/s23020858
Descripción
Sumario:Defects or cracks in roads, building walls, floors, and product surfaces can degrade the completeness of the product and become an impediment to quality control. Machine learning can be a solution for detecting defects effectively without human experts; however, the low-power computing device cannot afford that. In this paper, we suggest a crack detection system accelerated by edge computing. Our system consists of two: Rsef and Rsef-Edge. Rsef is a real-time segmentation method based on effective feature extraction that can perform crack image segmentation by optimizing conventional deep learning models. Then, we construct the edge-based system, named Rsef-Edge, to significantly decrease the inference time of Rsef, even in low-power IoT devices. As a result, we show both a fast inference time and good accuracy even in a low-powered computing environment.