Cargando…
Accurate Crack Detection Based on Distributed Deep Learning for IoT Environment
Defects or cracks in roads, building walls, floors, and product surfaces can degrade the completeness of the product and become an impediment to quality control. Machine learning can be a solution for detecting defects effectively without human experts; however, the low-power computing device cannot...
Autores principales: | Kim, Youngpil, Yi, Shinuk, Ahn, Hyunho, Hong, Cheol-Ho |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9862405/ https://www.ncbi.nlm.nih.gov/pubmed/36679655 http://dx.doi.org/10.3390/s23020858 |
Ejemplares similares
-
Intrusion Detection in IoT Using Deep Learning
por: Banaamah, Alaa Mohammed, et al.
Publicado: (2022) -
The proposed hybrid deep learning intrusion prediction IoT (HDLIP-IoT) framework
por: Fadel, Magdy M., et al.
Publicado: (2022) -
Machine learning and deep learning approaches in IoT
por: Javed, Abqa, et al.
Publicado: (2023) -
Hands-on deep learning for IoT: train neural network models to develop intelligent IoT applications
por: Karim, Rezaul, et al.
Publicado: (2019) -
Leveraging Deep Learning for IoT Transceiver Identification
por: Gao, Jiayao, et al.
Publicado: (2023)