Cargando…
Characterization and Bioactive Potential of Secondary Metabolites Isolated from Piper sarmentosum Roxb.
Piper sarmentosum Roxb. (Piperaceae) is a traditional medicinal plant in South-East Asian countries. The chemical investigation of leaves from this species resulted in the isolation of three previously not described compounds, namely 4″-(3-hydroxy-3-methylglutaroyl)-2″-β-D-glucopyranosyl vitexin (1)...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9862425/ https://www.ncbi.nlm.nih.gov/pubmed/36674844 http://dx.doi.org/10.3390/ijms24021328 |
Sumario: | Piper sarmentosum Roxb. (Piperaceae) is a traditional medicinal plant in South-East Asian countries. The chemical investigation of leaves from this species resulted in the isolation of three previously not described compounds, namely 4″-(3-hydroxy-3-methylglutaroyl)-2″-β-D-glucopyranosyl vitexin (1), kadukoside (2), and 6-O-trans-p-coumaroyl-D-glucono-1,4-lactone (3), together with 31 known compounds. Of these known compounds, 21 compounds were isolated for the first time from P. sarmentosum. The structures were established by 1D and 2D NMR techniques and HR-ESI-MS analyses. The compounds were evaluated for their anthelmintic (Caenorhabditis elegans), antifungal (Botrytis cinerea, Septoria tritici and Phytophthora infestans), antibacterial (Aliivibrio fischeri) and cytotoxic (PC-3 and HT-29 human cancer cells lines) activities. Methyl-3-(4-methoxyphenyl)propionate (8), isoasarone (12), and trans-asarone (15) demonstrated anthelmintic activity with IC(50) values between 0.9 and 2.04 mM. Kadukoside (2) was most active against S. tritici with IC(50) at 5.0 µM and also induced 94% inhibition of P. infestans growth at 125 µM. Trans-asarone (15), piperolactam A (23), and dehydroformouregine (24) displayed a dose-dependent effect against B. cinerea from 1.5 to 125 µM up to more than 80% inhibition. Paprazine (19), cepharadione A (21) and piperolactam A (23) inhibited bacterial growth by more than 85% at 100 µM. Only mild cytotoxic effects were observed. |
---|