Cargando…

A Novel Wideband Transition from LTCC Laminated Waveguide to Air-Filled Rectangular Waveguide for W-band Applications

In this paper, a novel wideband transition from a laminated waveguide (LWG) to an air-filled rectangular waveguide (RWG) is proposed for millimeter-wave integration solutions based on multilayer low-temperature co-fired ceramic (LTCC) technology. The integrated transition cavity is divided into seve...

Descripción completa

Detalles Bibliográficos
Autores principales: Yuan, Bin, Du, Qing, Hao, Chengxiang, Zhao, Yan, Yu, Zhongjun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9862428/
https://www.ncbi.nlm.nih.gov/pubmed/36677114
http://dx.doi.org/10.3390/mi14010052
Descripción
Sumario:In this paper, a novel wideband transition from a laminated waveguide (LWG) to an air-filled rectangular waveguide (RWG) is proposed for millimeter-wave integration solutions based on multilayer low-temperature co-fired ceramic (LTCC) technology. The integrated transition cavity is divided into several resonators by introducing five grounded via holes. Due to the magnetic wall existing in the symmetry plane, the equivalent circuit of the proposed transition can be simplified as a three-pole filter model to explain the working mechanism with wideband performance. A W-band integrated LWG-to-RWG transition is designed as an example using LTCC technology. Two back-to-back prototypes with different lengths are fabricated and measured. A measured 25.7% bandwidth from 76 GHz to 101 GHz can be achieved for return loss better than 14 dB. The average insertion loss of a single transition is about 0.5 dB. The compact structure and wideband performance give it potential in high-density millimeter-wave and terahertz packaging.