Cargando…
A Hardware-Friendly High-Precision CNN Pruning Method and Its FPGA Implementation
To address the problems of large storage requirements, computational pressure, untimely data supply of off-chip memory, and low computational efficiency during hardware deployment due to the large number of convolutional neural network (CNN) parameters, we developed an innovative hardware-friendly C...
Autores principales: | Sui, Xuefu, Lv, Qunbo, Zhi, Liangjie, Zhu, Baoyu, Yang, Yuanbo, Zhang, Yu, Tan, Zheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9862432/ https://www.ncbi.nlm.nih.gov/pubmed/36679624 http://dx.doi.org/10.3390/s23020824 |
Ejemplares similares
-
A Hardware-Friendly Low-Bit Power-of-Two Quantization Method for CNNs and Its FPGA Implementation
por: Sui, Xuefu, et al.
Publicado: (2022) -
Blind Deblurring of Remote-Sensing Single Images Based on Feature Alignment
por: Zhu, Baoyu, et al.
Publicado: (2022) -
A Method of FPGA-Based Extraction of High-Precision Time-Difference Information and Implementation of Its Hardware Circuit
por: Li, Jian, et al.
Publicado: (2019) -
FPGA Implementation of Image Registration Using Accelerated CNN
por: Aydin, Seda Guzel, et al.
Publicado: (2023) -
Efficient BinDCT hardware architecture exploration and implementation on FPGA
por: Ben Abdelali, Abdessalem, et al.
Publicado: (2016)