Cargando…

Will the Interactions of Some Platinum (II)-Based Drugs with B-Vitamins Reduce Their Therapeutic Effect in Cancer Patients? Comparison of Chemotherapeutic Agents such as Cisplatin, Carboplatin and Oxaliplatin—A Review

Pt (II) derivatives show anti-cancer activity by interacting with nucleobases of DNA, thus causing some spontaneous and non-spontaneous reactions. As a result, mono- and diaqua products are formed which further undergo complexation with guanine or adenine. Consequently, many processes are triggered,...

Descripción completa

Detalles Bibliográficos
Autores principales: Szefler, Beata, Czeleń, Przemysław
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9862491/
https://www.ncbi.nlm.nih.gov/pubmed/36675064
http://dx.doi.org/10.3390/ijms24021548
_version_ 1784875105678000128
author Szefler, Beata
Czeleń, Przemysław
author_facet Szefler, Beata
Czeleń, Przemysław
author_sort Szefler, Beata
collection PubMed
description Pt (II) derivatives show anti-cancer activity by interacting with nucleobases of DNA, thus causing some spontaneous and non-spontaneous reactions. As a result, mono- and diaqua products are formed which further undergo complexation with guanine or adenine. Consequently, many processes are triggered, which lead to the death of the cancer cell. The theoretical and experimental studies confirm that such types of interactions can also occur with other chemical compounds. The vitamins from B group have a similar structure to the nucleobases of DNA and have aromatic rings with single-pair orbitals. Theoretical and experimental studies were performed to describe the interactions of B vitamins with Pt (II) derivatives such as cisplatin, oxaliplatin and carboplatin. The obtained results were compared with the values for guanine. Two levels of simulations were implemented at the theoretical level, namely, B3LYP/6-31G(d,p) with LANL2DZ bases set for platinum atoms and MN15/def2-TZVP. The polarizable continuum model (IEF–PCM preparation) and water as a solvent were used. UV-Vis spectroscopy was used to describe the drug–nucleobase and drug–B vitamin interactions. Values of the free energy (ΔG(r)) show spontaneous reactions with mono- and diaqua derivatives of cisplatin and oxaliplatin; however, interactions with diaqua derivatives are more preferable. The strength of these interactions was also compared. Carboplatin products have the weakest interaction with the studied structures. The presence of non-covalent interactions was demonstrated in the tested complexes. A good agreement between theory and experiment was also demonstrated.
format Online
Article
Text
id pubmed-9862491
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-98624912023-01-22 Will the Interactions of Some Platinum (II)-Based Drugs with B-Vitamins Reduce Their Therapeutic Effect in Cancer Patients? Comparison of Chemotherapeutic Agents such as Cisplatin, Carboplatin and Oxaliplatin—A Review Szefler, Beata Czeleń, Przemysław Int J Mol Sci Review Pt (II) derivatives show anti-cancer activity by interacting with nucleobases of DNA, thus causing some spontaneous and non-spontaneous reactions. As a result, mono- and diaqua products are formed which further undergo complexation with guanine or adenine. Consequently, many processes are triggered, which lead to the death of the cancer cell. The theoretical and experimental studies confirm that such types of interactions can also occur with other chemical compounds. The vitamins from B group have a similar structure to the nucleobases of DNA and have aromatic rings with single-pair orbitals. Theoretical and experimental studies were performed to describe the interactions of B vitamins with Pt (II) derivatives such as cisplatin, oxaliplatin and carboplatin. The obtained results were compared with the values for guanine. Two levels of simulations were implemented at the theoretical level, namely, B3LYP/6-31G(d,p) with LANL2DZ bases set for platinum atoms and MN15/def2-TZVP. The polarizable continuum model (IEF–PCM preparation) and water as a solvent were used. UV-Vis spectroscopy was used to describe the drug–nucleobase and drug–B vitamin interactions. Values of the free energy (ΔG(r)) show spontaneous reactions with mono- and diaqua derivatives of cisplatin and oxaliplatin; however, interactions with diaqua derivatives are more preferable. The strength of these interactions was also compared. Carboplatin products have the weakest interaction with the studied structures. The presence of non-covalent interactions was demonstrated in the tested complexes. A good agreement between theory and experiment was also demonstrated. MDPI 2023-01-12 /pmc/articles/PMC9862491/ /pubmed/36675064 http://dx.doi.org/10.3390/ijms24021548 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Review
Szefler, Beata
Czeleń, Przemysław
Will the Interactions of Some Platinum (II)-Based Drugs with B-Vitamins Reduce Their Therapeutic Effect in Cancer Patients? Comparison of Chemotherapeutic Agents such as Cisplatin, Carboplatin and Oxaliplatin—A Review
title Will the Interactions of Some Platinum (II)-Based Drugs with B-Vitamins Reduce Their Therapeutic Effect in Cancer Patients? Comparison of Chemotherapeutic Agents such as Cisplatin, Carboplatin and Oxaliplatin—A Review
title_full Will the Interactions of Some Platinum (II)-Based Drugs with B-Vitamins Reduce Their Therapeutic Effect in Cancer Patients? Comparison of Chemotherapeutic Agents such as Cisplatin, Carboplatin and Oxaliplatin—A Review
title_fullStr Will the Interactions of Some Platinum (II)-Based Drugs with B-Vitamins Reduce Their Therapeutic Effect in Cancer Patients? Comparison of Chemotherapeutic Agents such as Cisplatin, Carboplatin and Oxaliplatin—A Review
title_full_unstemmed Will the Interactions of Some Platinum (II)-Based Drugs with B-Vitamins Reduce Their Therapeutic Effect in Cancer Patients? Comparison of Chemotherapeutic Agents such as Cisplatin, Carboplatin and Oxaliplatin—A Review
title_short Will the Interactions of Some Platinum (II)-Based Drugs with B-Vitamins Reduce Their Therapeutic Effect in Cancer Patients? Comparison of Chemotherapeutic Agents such as Cisplatin, Carboplatin and Oxaliplatin—A Review
title_sort will the interactions of some platinum (ii)-based drugs with b-vitamins reduce their therapeutic effect in cancer patients? comparison of chemotherapeutic agents such as cisplatin, carboplatin and oxaliplatin—a review
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9862491/
https://www.ncbi.nlm.nih.gov/pubmed/36675064
http://dx.doi.org/10.3390/ijms24021548
work_keys_str_mv AT szeflerbeata willtheinteractionsofsomeplatinumiibaseddrugswithbvitaminsreducetheirtherapeuticeffectincancerpatientscomparisonofchemotherapeuticagentssuchascisplatincarboplatinandoxaliplatinareview
AT czelenprzemysław willtheinteractionsofsomeplatinumiibaseddrugswithbvitaminsreducetheirtherapeuticeffectincancerpatientscomparisonofchemotherapeuticagentssuchascisplatincarboplatinandoxaliplatinareview