Cargando…

siRNA-E6 sensitizes HPV-16-related cervical cancer through Oxaliplatin: an in vitro study on anti-cancer combination therapy

BACKGROUND: Persistent infection with high-risk Human papillomaviruses (HPV), such as hr-HPV-16 and hr-HPV-18, lead to cervical cancer, the fourth most common cancer in the world. In the present study, we investigated the alteration of E6 oncogene expression by E6-specific short interfering RNA (siR...

Descripción completa

Detalles Bibliográficos
Autores principales: Shiri Aghbash, Parisa, Hemmat, Nima, Baradaran, Behzad, Bannazadeh Baghi, Hossein
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9862546/
https://www.ncbi.nlm.nih.gov/pubmed/36681850
http://dx.doi.org/10.1186/s40001-023-01014-9
Descripción
Sumario:BACKGROUND: Persistent infection with high-risk Human papillomaviruses (HPV), such as hr-HPV-16 and hr-HPV-18, lead to cervical cancer, the fourth most common cancer in the world. In the present study, we investigated the alteration of E6 oncogene expression by E6-specific short interfering RNA (siRNA) combined with Oxaliplatin. METHODS: The cervical cancer cell line, CaSki, was transfected with E6-siRNA, then treated with Oxaliplatin. The cellular genes, such as p53, MMP9, Nanog, and caspases expression, were assessed by quantitative real-time PCR. The cell death rate, cell cycle, and cell viability were assessed by Annexin V/PI staining, DAPI staining, and MTT test, respectively. Furthermore, colony formation assay and scratch test determined the stemness ability and cell metastasis, respectively. RESULTS: Combination therapy increased the re-expression of genes involved in the p53-dependent apoptosis pathway (increase in apoptosis to 44.2%), and reduced stemness and metastasis ability compared to either siRNA or Oxaliplatin monotherapy. Together, our results demonstrate that E6-siRNA and Oxaliplatin combination increased the cervical cancer cells’ sensitivity to Oxaliplatin and decreased the survival rate, proliferation, and metastasis, and consequently escalated apoptosis rate, induced cell cycle arrest in the sub-G1 stage, and reduced the chemotherapy drug dosage. CONCLUSION: Inhibition of E6 oncogene expression and subsequent E6-siRNA with Oxaliplatin combination therapy could be a novel strategy for cervical cancer treatment. GRAPHICAL ABSTRACT: [Image: see text]