Cargando…
Fuel Characteristics and Removal of AAEMs in Hydrochars Derived from Sewage Sludge and Corn Straw
Co-hydrothermal carbonization (Co-HTC) of sewage sludge (SS) and corn straw (CS) for fuel preparation is a waste treatment method that reduces the pre-treatment cost of solid waste and biomass fuel. Based on the response surface methodology (RSM), a test was designed to prepare SS and CS hydrochars...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9862732/ https://www.ncbi.nlm.nih.gov/pubmed/36677840 http://dx.doi.org/10.3390/molecules28020781 |
Sumario: | Co-hydrothermal carbonization (Co-HTC) of sewage sludge (SS) and corn straw (CS) for fuel preparation is a waste treatment method that reduces the pre-treatment cost of solid waste and biomass fuel. Based on the response surface methodology (RSM), a test was designed to prepare SS and CS hydrochars using a hydrothermal high-pressure reactor. The test examined the higher heating value (HHV) and the concentrations of alkali metals and alkaline earth metals (AAEMs) and Cl. The HHV of SS-hydrochar decreased with an increase in reaction temperature, but that of CS-hydrochar increased. The yield of CS-hydrochar was at 26.74–61.26%, substantially lower than that of SS-hydrochar. Co-hydrochar has the advantages of HHV and an acceptable yield. The HHV of co-hydrochar was 9215.51–12,083.2 kJ/kg, representing an increase of 12.6–47.6% over single component hydrochar, while the yield of co-hydrochar was 41.46–72.81%. In addition, the stabilities of AAEM and Cl in the co-hydrochar were Mg > Ca > K > Na > Cl. SS and CS had a synergistic effect on dechlorination efficiency (DE), which had a negative effect on the removal efficiency (RE) of Ca and Na. The optimal hydrocharization conditions were a temperature of approximately 246.14 °C, a residence time of approximately 90 min, and a mixing ratio of SS–CS of approximately 57.18%. The results offer a way to utilize SS and CS by Co-HTC and convert them into low-chlorine and low-alkali fuel, thus pushing the improvement of this promising waste-to-energy technology. |
---|