Cargando…
Penetrating Exploration of Prognostic Correlations of the FKBP Gene Family with Lung Adenocarcinoma
The complexity of lung adenocarcinoma (LUAD), the development of which involves many interacting biological processes, makes it difficult to find therapeutic biomarkers for treatment. FK506-binding proteins (FKBPs) are composed of 12 members classified as conservative intracellular immunophilin fami...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9862762/ https://www.ncbi.nlm.nih.gov/pubmed/36675710 http://dx.doi.org/10.3390/jpm13010049 |
_version_ | 1784875170655109120 |
---|---|
author | Wang, Chin-Chou Shen, Wan-Jou Anuraga, Gangga Hsieh, Yu-Hsiu Khoa Ta, Hoang Dang Xuan, Do Thi Minh Shen, Chiu-Fan Wang, Chih-Yang Wang, Wei-Jan |
author_facet | Wang, Chin-Chou Shen, Wan-Jou Anuraga, Gangga Hsieh, Yu-Hsiu Khoa Ta, Hoang Dang Xuan, Do Thi Minh Shen, Chiu-Fan Wang, Chih-Yang Wang, Wei-Jan |
author_sort | Wang, Chin-Chou |
collection | PubMed |
description | The complexity of lung adenocarcinoma (LUAD), the development of which involves many interacting biological processes, makes it difficult to find therapeutic biomarkers for treatment. FK506-binding proteins (FKBPs) are composed of 12 members classified as conservative intracellular immunophilin family proteins, which are often connected to cyclophilin structures by tetratricopeptide repeat domains and have peptidyl prolyl isomerase activity that catalyzes proline from residues and turns the trans form into the cis form. Since FKBPs belong to chaperone molecules and promote protein folding, previous studies demonstrated that FKBP family members significantly contribute to the degradation of damaged, misfolded, abnormal, and foreign proteins. However, transcript expressions of this gene family in LUAD still need to be more fully investigated. In this research, we adopted high-throughput bioinformatics technology to analyze FKBP family genes in LUAD to provide credible information to clinicians and promote the development of novel cancer target drugs in the future. The current data revealed that the messenger (m)RNA levels of FKBP2, FKBP3, FKBP4, FKBP10, FKBP11, and FKBP14 were overexpressed in LUAD, and FKBP10 had connections to poor prognoses among LUAD patients in an overall survival (OS) analysis. Based on the above results, we selected FKBP10 to further conduct a comprehensive analysis of the downstream pathway and network. Through a DAVID analysis, we found that FKBP10 was involved in mitochondrial electron transport, NADH to ubiquinone transport, mitochondrial respiratory chain complex I assembly, etc. The MetaCore pathway analysis also indicated that FKBP10 was involved in "Ubiquinone metabolism", "Translation_(L)-selenoaminoacid incorporation in proteins during translation", and "Transcription_Negative regulation of HIF1A function". Collectively, this study revealed that FKBP family members are both significant prognostic biomarkers for lung cancer progression and promising clinical therapeutic targets, thus providing new targets for treating LUAD patients. |
format | Online Article Text |
id | pubmed-9862762 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-98627622023-01-22 Penetrating Exploration of Prognostic Correlations of the FKBP Gene Family with Lung Adenocarcinoma Wang, Chin-Chou Shen, Wan-Jou Anuraga, Gangga Hsieh, Yu-Hsiu Khoa Ta, Hoang Dang Xuan, Do Thi Minh Shen, Chiu-Fan Wang, Chih-Yang Wang, Wei-Jan J Pers Med Article The complexity of lung adenocarcinoma (LUAD), the development of which involves many interacting biological processes, makes it difficult to find therapeutic biomarkers for treatment. FK506-binding proteins (FKBPs) are composed of 12 members classified as conservative intracellular immunophilin family proteins, which are often connected to cyclophilin structures by tetratricopeptide repeat domains and have peptidyl prolyl isomerase activity that catalyzes proline from residues and turns the trans form into the cis form. Since FKBPs belong to chaperone molecules and promote protein folding, previous studies demonstrated that FKBP family members significantly contribute to the degradation of damaged, misfolded, abnormal, and foreign proteins. However, transcript expressions of this gene family in LUAD still need to be more fully investigated. In this research, we adopted high-throughput bioinformatics technology to analyze FKBP family genes in LUAD to provide credible information to clinicians and promote the development of novel cancer target drugs in the future. The current data revealed that the messenger (m)RNA levels of FKBP2, FKBP3, FKBP4, FKBP10, FKBP11, and FKBP14 were overexpressed in LUAD, and FKBP10 had connections to poor prognoses among LUAD patients in an overall survival (OS) analysis. Based on the above results, we selected FKBP10 to further conduct a comprehensive analysis of the downstream pathway and network. Through a DAVID analysis, we found that FKBP10 was involved in mitochondrial electron transport, NADH to ubiquinone transport, mitochondrial respiratory chain complex I assembly, etc. The MetaCore pathway analysis also indicated that FKBP10 was involved in "Ubiquinone metabolism", "Translation_(L)-selenoaminoacid incorporation in proteins during translation", and "Transcription_Negative regulation of HIF1A function". Collectively, this study revealed that FKBP family members are both significant prognostic biomarkers for lung cancer progression and promising clinical therapeutic targets, thus providing new targets for treating LUAD patients. MDPI 2022-12-26 /pmc/articles/PMC9862762/ /pubmed/36675710 http://dx.doi.org/10.3390/jpm13010049 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Wang, Chin-Chou Shen, Wan-Jou Anuraga, Gangga Hsieh, Yu-Hsiu Khoa Ta, Hoang Dang Xuan, Do Thi Minh Shen, Chiu-Fan Wang, Chih-Yang Wang, Wei-Jan Penetrating Exploration of Prognostic Correlations of the FKBP Gene Family with Lung Adenocarcinoma |
title | Penetrating Exploration of Prognostic Correlations of the FKBP Gene Family with Lung Adenocarcinoma |
title_full | Penetrating Exploration of Prognostic Correlations of the FKBP Gene Family with Lung Adenocarcinoma |
title_fullStr | Penetrating Exploration of Prognostic Correlations of the FKBP Gene Family with Lung Adenocarcinoma |
title_full_unstemmed | Penetrating Exploration of Prognostic Correlations of the FKBP Gene Family with Lung Adenocarcinoma |
title_short | Penetrating Exploration of Prognostic Correlations of the FKBP Gene Family with Lung Adenocarcinoma |
title_sort | penetrating exploration of prognostic correlations of the fkbp gene family with lung adenocarcinoma |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9862762/ https://www.ncbi.nlm.nih.gov/pubmed/36675710 http://dx.doi.org/10.3390/jpm13010049 |
work_keys_str_mv | AT wangchinchou penetratingexplorationofprognosticcorrelationsofthefkbpgenefamilywithlungadenocarcinoma AT shenwanjou penetratingexplorationofprognosticcorrelationsofthefkbpgenefamilywithlungadenocarcinoma AT anuragagangga penetratingexplorationofprognosticcorrelationsofthefkbpgenefamilywithlungadenocarcinoma AT hsiehyuhsiu penetratingexplorationofprognosticcorrelationsofthefkbpgenefamilywithlungadenocarcinoma AT khoatahoangdang penetratingexplorationofprognosticcorrelationsofthefkbpgenefamilywithlungadenocarcinoma AT xuandothiminh penetratingexplorationofprognosticcorrelationsofthefkbpgenefamilywithlungadenocarcinoma AT shenchiufan penetratingexplorationofprognosticcorrelationsofthefkbpgenefamilywithlungadenocarcinoma AT wangchihyang penetratingexplorationofprognosticcorrelationsofthefkbpgenefamilywithlungadenocarcinoma AT wangweijan penetratingexplorationofprognosticcorrelationsofthefkbpgenefamilywithlungadenocarcinoma |