Cargando…
Deep Learning-Based Multiclass Brain Tissue Segmentation in Fetal MRIs
Fetal brain tissue segmentation is essential for quantifying the presence of congenital disorders in the developing fetus. Manual segmentation of fetal brain tissue is cumbersome and time-consuming, so using an automatic segmentation method can greatly simplify the process. In addition, the fetal br...
Autores principales: | Huang, Xiaona, Liu, Yang, Li, Yuhan, Qi, Keying, Gao, Ang, Zheng, Bowen, Liang, Dong, Long, Xiaojing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9862805/ https://www.ncbi.nlm.nih.gov/pubmed/36679449 http://dx.doi.org/10.3390/s23020655 |
Ejemplares similares
-
Automated multiclass tissue segmentation of clinical brain MRIs with lesions
por: Weiss, David A., et al.
Publicado: (2021) -
Automatic biometry of fetal brain MRIs using deep and machine learning techniques
por: She, Jiayan, et al.
Publicado: (2023) -
Multiclass CBCT Image Segmentation for Orthodontics with Deep Learning
por: Wang, H., et al.
Publicado: (2021) -
The optimisation of deep neural networks for segmenting multiple knee joint tissues from MRIs
por: Kessler, Dimitri A., et al.
Publicado: (2020) -
Mini Review: Deep Learning for Atrial Segmentation From Late Gadolinium-Enhanced MRIs
por: Jamart, Kevin, et al.
Publicado: (2020)