Cargando…
Can Hierarchical Transformers Learn Facial Geometry?
Human faces are a core part of our identity and expression, and thus, understanding facial geometry is key to capturing this information. Automated systems that seek to make use of this information must have a way of modeling facial features in a way that makes them accessible. Hierarchical, multi-l...
Autores principales: | Young, Paul, Ebadi, Nima, Das, Arun, Bethany, Mazal, Desai, Kevin, Najafirad, Peyman |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9862876/ https://www.ncbi.nlm.nih.gov/pubmed/36679725 http://dx.doi.org/10.3390/s23020929 |
Ejemplares similares
-
Deepfake forensics analysis: An explainable hierarchical ensemble of weakly supervised models
por: Silva, Samuel Henrique, et al.
Publicado: (2022) -
Multimodal explainable AI predicts upcoming speech behavior in adults who stutter
por: Das, Arun, et al.
Publicado: (2022) -
Applied cloud deep semantic recognition: advanced anomaly detection
por: Roopaei, Mehdi, et al.
Publicado: (2018) -
Transformation geometry : an introduction to symmetry
por: Martin, George Edward 1932-
Publicado: (1982) -
Transformational plane geometry
por: Umble, Ronald N, et al.
Publicado: (2014)