Cargando…
A Novel Point Cloud Registration Method Based on ROPNet
Point cloud registration is a crucial preprocessing step for point cloud data analysis and applications. Nowadays, many deep-learning-based methods have been proposed to improve the registration quality. These methods always use the sum of two cross-entropy as a loss function to train the model, whi...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9862902/ https://www.ncbi.nlm.nih.gov/pubmed/36679791 http://dx.doi.org/10.3390/s23020993 |
Sumario: | Point cloud registration is a crucial preprocessing step for point cloud data analysis and applications. Nowadays, many deep-learning-based methods have been proposed to improve the registration quality. These methods always use the sum of two cross-entropy as a loss function to train the model, which may lead to mismatching in overlapping regions. In this paper, we designed a new loss function based on the cross-entropy and applied it to the ROPNet point cloud registration model. Meanwhile, we improved the ROPNet by adding the channel attention mechanism to make the network focus on both global and local important information, thus improving the registration performance and reducing the point cloud registration error. We tested our method on ModelNet40 dataset, and the experimental results demonstrate the effectiveness of our proposed method. |
---|