Cargando…

Analysis of the Structure and the Thermal Conductivity of Semi-Crystalline Polyetheretherketone/Boron Nitride Sheet Composites Using All-Atom Molecular Dynamics Simulation

Thermal transport simulations were performed to investigate the important factors affecting the thermal conductivity based on the structure of semi-crystalline polyetheretherketone (PEEK), and the addition of boron nitride (BN) sheets. The molecular-level structural analysis facilitated the predicti...

Descripción completa

Detalles Bibliográficos
Autores principales: Oh, Yuna, Bae, Kwak Jin, Kim, Yonjig, Yu, Jaesang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9862992/
https://www.ncbi.nlm.nih.gov/pubmed/36679330
http://dx.doi.org/10.3390/polym15020450
Descripción
Sumario:Thermal transport simulations were performed to investigate the important factors affecting the thermal conductivity based on the structure of semi-crystalline polyetheretherketone (PEEK), and the addition of boron nitride (BN) sheets. The molecular-level structural analysis facilitated the prediction of the thermal conductivity of the optimal structure of PEEK reflecting the best parameter value of the length of amorphous chains, and the ratio of linkage conformations, such as loops, tails, and bridges. It was found that the long heat transfer paths of polymer chains were induced by the addition of BN sheets, which led to the improvement of the thermal conductivities of the PEEK/BN composites. In addition, the convergence of the thermal conductivities of the PEEK/BN composites in relation to BN sheet size was verified by the disconnection of the heat transfer path due to aggregation of the BN sheets.