Cargando…

Deepfakes Generation and Detection: A Short Survey

Advancements in deep learning techniques and the availability of free, large databases have made it possible, even for non-technical people, to either manipulate or generate realistic facial samples for both benign and malicious purposes. DeepFakes refer to face multimedia content, which has been di...

Descripción completa

Detalles Bibliográficos
Autor principal: Akhtar, Zahid
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9863015/
https://www.ncbi.nlm.nih.gov/pubmed/36662116
http://dx.doi.org/10.3390/jimaging9010018
Descripción
Sumario:Advancements in deep learning techniques and the availability of free, large databases have made it possible, even for non-technical people, to either manipulate or generate realistic facial samples for both benign and malicious purposes. DeepFakes refer to face multimedia content, which has been digitally altered or synthetically created using deep neural networks. The paper first outlines the readily available face editing apps and the vulnerability (or performance degradation) of face recognition systems under various face manipulations. Next, this survey presents an overview of the techniques and works that have been carried out in recent years for deepfake and face manipulations. Especially, four kinds of deepfake or face manipulations are reviewed, i.e., identity swap, face reenactment, attribute manipulation, and entire face synthesis. For each category, deepfake or face manipulation generation methods as well as those manipulation detection methods are detailed. Despite significant progress based on traditional and advanced computer vision, artificial intelligence, and physics, there is still a huge arms race surging up between attackers/offenders/adversaries (i.e., DeepFake generation methods) and defenders (i.e., DeepFake detection methods). Thus, open challenges and potential research directions are also discussed. This paper is expected to aid the readers in comprehending deepfake generation and detection mechanisms, together with open issues and future directions.