Cargando…
Dose- and Segment-Dependent Disturbance of Rat Gut by Ionizing Radiation: Impact of Tight Junction Proteins
The damaging effect of ionizing radiation (IR) exposure results in the disturbance of the gut natural barrier, followed by the development of severe gastrointestinal injury. However, the dose and application segment are known to determine the effects of IR. In this study, we demonstrated the dose- a...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9863103/ https://www.ncbi.nlm.nih.gov/pubmed/36675266 http://dx.doi.org/10.3390/ijms24021753 |
_version_ | 1784875252929527808 |
---|---|
author | Livanova, Alexandra A. Fedorova, Arina A. Zavirsky, Alexander V. Krivoi, Igor I. Markov, Alexander G. |
author_facet | Livanova, Alexandra A. Fedorova, Arina A. Zavirsky, Alexander V. Krivoi, Igor I. Markov, Alexander G. |
author_sort | Livanova, Alexandra A. |
collection | PubMed |
description | The damaging effect of ionizing radiation (IR) exposure results in the disturbance of the gut natural barrier, followed by the development of severe gastrointestinal injury. However, the dose and application segment are known to determine the effects of IR. In this study, we demonstrated the dose- and segment-specificity of tight junction (TJ) alteration in IR-induced gastrointestinal injury in rats. Male Wistar rats were subjected to a total-body X-ray irradiation at doses of 2 or 10 Gy. Isolated jejunum and colon segments were tested in an Ussing chamber 72 h after exposure. In the jejunum, 10-Gy IR dramatically altered transepithelial resistance, short-circuit current and permeability for sodium fluorescein. These changes were accompanied by severe disturbance of histological structure and total rearrangement of TJ content (increased content of claudin-1, -2, -3 and -4; multidirectional changes in tricellulin and occludin). In the colon of 10-Gy irradiated rats, lesions of barrier and transport functions were less pronounced, with only claudin-2 and -4 altered among TJ proteins. The 2-Gy IR did not change electrophysiological characteristics or permeability in the colon or jejunum, although slight alterations in jejunum histology were noted, emphasized with claudin-3 increase. Considering that TJ proteins are critical for maintaining epithelial barrier integrity, these findings may have implications for countermeasures in gastrointestinal acute radiation injury. |
format | Online Article Text |
id | pubmed-9863103 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-98631032023-01-22 Dose- and Segment-Dependent Disturbance of Rat Gut by Ionizing Radiation: Impact of Tight Junction Proteins Livanova, Alexandra A. Fedorova, Arina A. Zavirsky, Alexander V. Krivoi, Igor I. Markov, Alexander G. Int J Mol Sci Article The damaging effect of ionizing radiation (IR) exposure results in the disturbance of the gut natural barrier, followed by the development of severe gastrointestinal injury. However, the dose and application segment are known to determine the effects of IR. In this study, we demonstrated the dose- and segment-specificity of tight junction (TJ) alteration in IR-induced gastrointestinal injury in rats. Male Wistar rats were subjected to a total-body X-ray irradiation at doses of 2 or 10 Gy. Isolated jejunum and colon segments were tested in an Ussing chamber 72 h after exposure. In the jejunum, 10-Gy IR dramatically altered transepithelial resistance, short-circuit current and permeability for sodium fluorescein. These changes were accompanied by severe disturbance of histological structure and total rearrangement of TJ content (increased content of claudin-1, -2, -3 and -4; multidirectional changes in tricellulin and occludin). In the colon of 10-Gy irradiated rats, lesions of barrier and transport functions were less pronounced, with only claudin-2 and -4 altered among TJ proteins. The 2-Gy IR did not change electrophysiological characteristics or permeability in the colon or jejunum, although slight alterations in jejunum histology were noted, emphasized with claudin-3 increase. Considering that TJ proteins are critical for maintaining epithelial barrier integrity, these findings may have implications for countermeasures in gastrointestinal acute radiation injury. MDPI 2023-01-16 /pmc/articles/PMC9863103/ /pubmed/36675266 http://dx.doi.org/10.3390/ijms24021753 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Livanova, Alexandra A. Fedorova, Arina A. Zavirsky, Alexander V. Krivoi, Igor I. Markov, Alexander G. Dose- and Segment-Dependent Disturbance of Rat Gut by Ionizing Radiation: Impact of Tight Junction Proteins |
title | Dose- and Segment-Dependent Disturbance of Rat Gut by Ionizing Radiation: Impact of Tight Junction Proteins |
title_full | Dose- and Segment-Dependent Disturbance of Rat Gut by Ionizing Radiation: Impact of Tight Junction Proteins |
title_fullStr | Dose- and Segment-Dependent Disturbance of Rat Gut by Ionizing Radiation: Impact of Tight Junction Proteins |
title_full_unstemmed | Dose- and Segment-Dependent Disturbance of Rat Gut by Ionizing Radiation: Impact of Tight Junction Proteins |
title_short | Dose- and Segment-Dependent Disturbance of Rat Gut by Ionizing Radiation: Impact of Tight Junction Proteins |
title_sort | dose- and segment-dependent disturbance of rat gut by ionizing radiation: impact of tight junction proteins |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9863103/ https://www.ncbi.nlm.nih.gov/pubmed/36675266 http://dx.doi.org/10.3390/ijms24021753 |
work_keys_str_mv | AT livanovaalexandraa doseandsegmentdependentdisturbanceofratgutbyionizingradiationimpactoftightjunctionproteins AT fedorovaarinaa doseandsegmentdependentdisturbanceofratgutbyionizingradiationimpactoftightjunctionproteins AT zavirskyalexanderv doseandsegmentdependentdisturbanceofratgutbyionizingradiationimpactoftightjunctionproteins AT krivoiigori doseandsegmentdependentdisturbanceofratgutbyionizingradiationimpactoftightjunctionproteins AT markovalexanderg doseandsegmentdependentdisturbanceofratgutbyionizingradiationimpactoftightjunctionproteins |