Cargando…
Semi-Supervised Adversarial Auto-Encoder to Expedite Human Activity Recognition
The study of human activity recognition concentrates on classifying human activities and the inference of human behavior using modern sensing technology. However, the issue of domain adaptation for inertial sensing-based human activity recognition (HAR) is still burdensome. The existing requirement...
Autores principales: | Thapa, Keshav, Seo, Yousung, Yang, Sung-Hyun, Kim, Kyong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9863227/ https://www.ncbi.nlm.nih.gov/pubmed/36679478 http://dx.doi.org/10.3390/s23020683 |
Ejemplares similares
-
Semi-Supervised Adversarial Learning Using LSTM for Human Activity Recognition
por: Yang, Sung-Hyun, et al.
Publicado: (2022) -
Generative Adversarial Training for Supervised and Semi-supervised Learning
por: Wang, Xianmin, et al.
Publicado: (2022) -
Semi-Supervised Generative Adversarial Nets with Multiple Generators for SAR Image Recognition
por: Gao, Fei, et al.
Publicado: (2018) -
Hardness Recognition of Robotic Forearm Based on Semi-supervised Generative Adversarial Networks
por: Qian, Xiaoliang, et al.
Publicado: (2019) -
Semi-supervised adversarial discriminative domain adaptation
por: Nguyen, Thai-Vu, et al.
Publicado: (2022)