Cargando…
Toward Accurate yet Effective Computations of Rotational Spectroscopy Parameters for Biomolecule Building Blocks
The interplay of high-resolution rotational spectroscopy and quantum-chemical computations plays an invaluable role in the investigation of biomolecule building blocks in the gas phase. However, quantum-chemical methods suffer from unfavorable scaling with the dimension of the system under considera...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9863398/ https://www.ncbi.nlm.nih.gov/pubmed/36677970 http://dx.doi.org/10.3390/molecules28020913 |
Sumario: | The interplay of high-resolution rotational spectroscopy and quantum-chemical computations plays an invaluable role in the investigation of biomolecule building blocks in the gas phase. However, quantum-chemical methods suffer from unfavorable scaling with the dimension of the system under consideration. While a complete characterization of flexible systems requires an elaborate multi-step strategy, in this work, we demonstrate that the accuracy obtained by quantum-chemical composite approaches in the prediction of rotational spectroscopy parameters can be approached by a model based on density functional theory. Glycine and serine are employed to demonstrate that, despite its limited cost, such a model is able to predict rotational constants with an accuracy of 0.3% or better, thus paving the way toward the accurate characterization of larger flexible building blocks of biomolecules. |
---|