Cargando…
Impact of Plastic-Wrap Properties and Cleaning Intervals on the Disinfection of Elevator Buttons
Fomite transmission is a possible route by which different pathogens spread within facilities. In hospital settings, elevator buttons are widely observed to be covered with various types of plastic wraps; however, limited information is available concerning the impact of different plastic materials...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9863425/ https://www.ncbi.nlm.nih.gov/pubmed/36674403 http://dx.doi.org/10.3390/ijerph20021649 |
Sumario: | Fomite transmission is a possible route by which different pathogens spread within facilities. In hospital settings, elevator buttons are widely observed to be covered with various types of plastic wraps; however, limited information is available concerning the impact of different plastic materials on cleaning. Our study aimed to identify which plastic material is suitable for the coverage of elevator buttons and the optimal intervals for their cleaning. We tested six plastic covers, including polyethylene (PE), polymethylpentene (PMP), polyvinyl chloride (PVD), and polyvinylidene chloride (PVDC) plastic wraps; a thermoplastic polyurethane (TPU) keyboard cover; and a polyethylene terephthalate-ethylene vinyl acetate (PET-EVA) laminating film, which are plastic films. The bioburden on the elevator buttons at different time intervals was measured using an adenosine triphosphate (ATP) bioluminescence assay. Our results show that wraps made of PVDC had superior durability compared with those of PMP, PVC, and PVDC, in addition to the lowest detectable ATP levels among the six tested materials. Regarding different button locations, the highest ATP values were found in door-close buttons followed by door-open, and first-floor buttons after one- and three-hour intervals (p = 0.024 and p < 0.001, respectively). After routine disinfection, the ATP levels of buttons rapidly increased after touching and became more prominent after three hours (p < 0.05). Our results indicate that PVDC plastic wraps have adequate durability and the lowest residual bioburden when applied as covers for elevator buttons. Door-close and -open buttons were the most frequently touched sites, requiring more accurate and precise disinfection; therefore, cleaning intervals of no longer than three hours may be warranted. |
---|