Cargando…
In Situ Synthesis of Hierarchical Flower-like Sn/SnO(2) Heterogeneous Structure for Ethanol GAS Detection
In this study, morphogenetic-based Sn/SnO(2) graded-structure composites were created by synthesizing two-dimensional SnO sheets using a hydrothermal technique, self-assembling into flower-like structures with an average petal width of roughly 3 um. The morphology and structure of the as-synthesized...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9863574/ https://www.ncbi.nlm.nih.gov/pubmed/36676526 http://dx.doi.org/10.3390/ma16020792 |
Sumario: | In this study, morphogenetic-based Sn/SnO(2) graded-structure composites were created by synthesizing two-dimensional SnO sheets using a hydrothermal technique, self-assembling into flower-like structures with an average petal width of roughly 3 um. The morphology and structure of the as-synthesized samples were characterized by utilizing SEM, XRD, XPS, etc. The gas-sensing characteristics of gas sensors based on the flower-like Sn/SnO(2) were thoroughly researched. The sensor displayed exceptional selectivity, a rapid response time of 4 s, and an ultrahigh response at 250 °C (Ra/Rg = 17.46). The excellent and enhanced ethanol-gas-sensing properties were mainly owing to the three-dimensional structure and the rise in the Schottky barrier caused by the in situ production of tin particles. |
---|