Cargando…

Self-Oscillating Curling of a Liquid Crystal Elastomer Beam under Steady Light

Self-oscillation absorbs energy from a steady environment to maintain its own continuous motion, eliminating the need to carry a power supply and controller, which will make the system more lightweight and promising for applications in energy harvesting, soft robotics, and microdevices. In this pape...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Junxiu, Zhao, Junjie, Wu, Haiyang, Dai, Yuntong, Li, Kai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9863816/
https://www.ncbi.nlm.nih.gov/pubmed/36679225
http://dx.doi.org/10.3390/polym15020344
Descripción
Sumario:Self-oscillation absorbs energy from a steady environment to maintain its own continuous motion, eliminating the need to carry a power supply and controller, which will make the system more lightweight and promising for applications in energy harvesting, soft robotics, and microdevices. In this paper, we present a self-oscillating curling liquid crystal elastomer (LCE) beam-mass system, which is placed on a table and can self-oscillate under steady light. Unlike other self-sustaining systems, the contact surface of the LCE beam with the tabletop exhibits a continuous change in size during self-sustaining curling, resulting in a dynamic boundary problem. Based on the dynamic LCE model, we establish a nonlinear dynamic model of the self-oscillating curling LCE beam considering the dynamic boundary conditions, and numerically calculate its dynamic behavior using the Runge-Kutta method. The existence of two motion patterns in the LCE beam-mass system under steady light are proven by numerical calculation, namely self-curling pattern and stationary pattern. When the energy input to the system exceeds the energy dissipated by air damping, the LCE beam undergoes self-oscillating curling. Furthermore, we investigate the effects of different dimensionless parameters on the critical conditions, the amplitude and the period of the self-curling of LCE beam. Results demonstrate that the light source height, curvature coefficient, light intensity, elastic modulus, damping factor, and gravitational acceleration can modulate the self-curling amplitude and period. The self-curling LCE beam system proposed in this study can be applied to autonomous robots, energy harvesters, and micro-instruments.