Cargando…
Fault Identification and Localization of a Time−Frequency Domain Joint Impedance Spectrum of Cables Based on Deep Belief Networks
To improve the accuracy of shallow neural networks in processing complex signals and cable fault diagnosis, and to overcome the shortage of manual dependency and cable fault feature extraction, a deep learning method is introduced, and a time−frequency domain joint impedance spectrum is proposed for...
Autores principales: | Wan, Qingzhu, Li, Yimeng, Yuan, Runjiao, Meng, Qinghai, Li, Xiaoxue |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9863884/ https://www.ncbi.nlm.nih.gov/pubmed/36679479 http://dx.doi.org/10.3390/s23020684 |
Ejemplares similares
-
Development of Deep Belief Network for Tool Faults Recognition
por: Kale, Archana P., et al.
Publicado: (2023) -
Locating Method for Electrical Tree Degradation in XLPE Cable Insulation Based on Broadband Impedance Spectrum
por: Han, Tao, et al.
Publicado: (2022) -
Non-Intrusive Cable Fault Diagnosis Based on Inductive Directional Coupling
por: Hu, Suyang, et al.
Publicado: (2018) -
Fault Diagnosis and Fault Frequency Determination of Permanent Magnet Synchronous Motor Based on Deep Learning
por: Wang, Chiao-Sheng, et al.
Publicado: (2021) -
Fault Detection and Identification Methods Used for the LHC Cryomagnets and Related Cabling
por: Bozzini, D, et al.
Publicado: (2006)