Cargando…
Co-Training for Unsupervised Domain Adaptation of Semantic Segmentation Models
Semantic image segmentation is a core task for autonomous driving, which is performed by deep models. Since training these models draws to a curse of human-based image labeling, the use of synthetic images with automatically generated labels together with unlabeled real-world images is a promising a...
Autores principales: | Gómez, Jose L., Villalonga, Gabriel, López, Antonio M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9864152/ https://www.ncbi.nlm.nih.gov/pubmed/36679419 http://dx.doi.org/10.3390/s23020621 |
Ejemplares similares
-
Latent space unsupervised semantic segmentation
por: Strommen, Knut J., et al.
Publicado: (2023) -
Unsupervised Black-Box Model Domain Adaptation for Brain Tumor Segmentation
por: Liu, Xiaofeng, et al.
Publicado: (2022) -
Co-Training for Deep Object Detection: Comparing Single-Modal and Multi-Modal Approaches
por: Gómez, Jose L., et al.
Publicado: (2021) -
Supervised Domain Adaptation for Automated Semantic Segmentation of the Atrial Cavity
por: Saiz-Vivó, Marta, et al.
Publicado: (2021) -
Unsupervised domain adaptation based COVID-19 CT infection segmentation network
por: Chen, Han, et al.
Publicado: (2021)