Cargando…
Variational Information Bottleneck Regularized Deep Reinforcement Learning for Efficient Robotic Skill Adaptation
Deep Reinforcement Learning (DRL) algorithms have been widely studied for sequential decision-making problems, and substantial progress has been achieved, especially in autonomous robotic skill learning. However, it is always difficult to deploy DRL methods in practical safety-critical robot systems...
Autores principales: | Xiang, Guofei, Dian, Songyi, Du, Shaofeng, Lv, Zhonghui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9864208/ https://www.ncbi.nlm.nih.gov/pubmed/36679561 http://dx.doi.org/10.3390/s23020762 |
Ejemplares similares
-
Semantic-Structure-Aware Multi-Level Information Fusion for Robust Global Orientation Optimization of Autonomous Mobile Robots
por: Xiang, Guofei, et al.
Publicado: (2023) -
Trajectory Tracking Control of Transformer Inspection Robot Using Distributed Model Predictive Control
por: Wei, Lai, et al.
Publicado: (2023) -
On the Difference between the Information Bottleneck and the Deep Information Bottleneck
por: Wieczorek, Aleksander, et al.
Publicado: (2020) -
Variational Information Bottleneck for Unsupervised Clustering: Deep Gaussian Mixture Embedding
por: Uğur, Yiğit, et al.
Publicado: (2020) -
Image-Based Ship Detection Using Deep Variational Information Bottleneck
por: Ngo, Duc-Dat, et al.
Publicado: (2023)